Resistance evaluation for herbicide resistance-endowing acetolactate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations

Weed Research ◽  
2012 ◽  
Vol 52 (2) ◽  
pp. 178-186 ◽  
Author(s):  
Q YU ◽  
H HAN ◽  
M LI ◽  
E PURBA ◽  
M J WALSH ◽  
...  
Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Michael J. Walsh ◽  
Stephen B. Powles ◽  
Brett R. Beard ◽  
Ben T. Parkin ◽  
Sally A. Porter

Populations of wild radish were collected from two fields in the northern Western Australian wheatbelt, where typical herbicide-use patterns had been practiced for the previous 17 seasons within an intensive crop production program. The herbicide resistance status of these populations clearly established that there was multiple-herbicide resistance across many herbicides from at least four modes of action. One population exhibited multiple-herbicide resistance to the phytoene desaturase (PDS)–inhibiting herbicide diflufenican (3.0-fold), the auxin analog herbicide 2,4-D (2.2-fold), and the photosystem II–inhibiting herbicides metribuzin and atrazine. Another population was found to be multiply resistant to the acetolactate synthase–inhibiting herbicides, the PDS-inhibiting herbicide diflufenican (2.5-fold), and the auxin analog herbicide 2,4-D amine (2.4-fold). Therefore, each population has developed multiple-herbicide resistance across several modes of action. The multiple resistance status of these wild radish populations developed from conventional herbicide usage in intensive cropping rotations, indicating a dramatic challenge for the future control of wild radish.


2015 ◽  
Vol 66 (5) ◽  
pp. 466 ◽  
Author(s):  
Mechelle J. Owen ◽  
Neree J. Martinez ◽  
Stephen B. Powles

Random surveys conducted in the Western Australian (WA) grain belt have shown that herbicide-resistant Lolium rigidum and Raphanus raphanistrum are a widespread problem across the cropping region. In 2010, a random survey was conducted to establish the levels of herbicide resistance for common weed species in crop fields, including the minor but emerging weeds Bromus and Hordeum spp. This is the first random survey in WA to establish the frequency of herbicide resistance in these species. For the annual grass weed Bromus, 91 populations were collected, indicating that this species was present in >20% of fields. Nearly all populations were susceptible to the commonly used herbicides tested in this study; however, a small number of populations (13%) displayed resistance to the acetolactate synthase-inhibiting sulfonylurea herbicides. Only one population displayed resistance to the acetyl-coenzyme A carboxylase-inhibiting herbicides. Forty-seven Hordeum populations were collected from 10% of fields, with most populations being susceptible to all herbicides tested. Of the Hordeum populations, 8% were resistant to the sulfonylurea herbicide sulfosulfuron, some with cross-resistance to the imidazolinone herbicides. No resistance was found to glyphosate or paraquat, although resistance to these herbicides has been documented elsewhere in Australia for Hordeum spp. (Victoria) and Bromus spp. (Victoria, South Australia and WA).


2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


Weed Science ◽  
2021 ◽  
pp. 1-25
Author(s):  
Qian Yang ◽  
Xia Yang ◽  
Zichang Zhang ◽  
Jieping Wang ◽  
Weiguo Fu ◽  
...  

Abstract Barnyardgrass (Echinochloa crus-galli) is a noxious grass weed which infests rice fields and causes huge crop yield losses. In this study, we collected twelve E. crus-galli populations from rice fields of Ningxia province in China and investigated the resistance levels to acetolactate synthase (ALS) inhibitor penoxsulam and acetyl-CoA carboxylase (ACCase) inhibitor cyhalofop-butyl. The results showed that eight populations exhibited resistance to penoxsulam and four populations evolved resistance to cyhalofop-butyl. Moreover, all of the four cyhalofop-butyl-resistant populations (NX3, NX4, NX6 and NX7) displayed multiple-herbicide-resistance (MHR) to both penoxsulam and cyhalofop-butyl. The alternative herbicides bispyribac-sodium, metamifop and fenoxaprop-P-ethyl cannot effectively control the MHR plants. To characterize the molecular mechanisms of resistance, we amplified and sequenced the target-site encoding genes in resistant and susceptible populations. Partial sequences of three ALS genes and six ACCase genes were examined. A Trp-574-Leu mutation was detected in EcALS1 and EcALS3 in two high-level (65.84- and 59.30-fold) penoxsulam-resistant populations NX2 and NX10, respectively. In addition, one copy (EcACC4) of ACCase genes encodes a truncated aberrant protein due to a frameshift mutation in E. crus-galli populations. None of amino acid substitutions that are known to confer herbicide resistance were detected in ALS and ACCase genes of MHR populations. Our study reveals the widespread of multiple-herbicide resistant E. crus-galli populations at Ningxia province of China that exhibit resistance to several ALS and ACCase inhibitors. Non-target-site based mechanisms are likely to be involved in E. crus-galli resistance to the herbicides, at least in four MHR populations.


2012 ◽  
Vol 52 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Ilias Travlos

Evaluation of Herbicide-Resistance Status on Populations of Littleseed Canarygrass (Phalaris MinorRetz.) from Southern Greece and Suggestions for their Effective ControlIn 2010, a survey was conducted in the wheat fields of a typical cereal-producing region of Greece to establish the frequency and distribution of herbicide-resistant littleseed canarygrass (Phalaris minorRetz.). In total, 73 canarygrass accessions were collected and screened in a field experiment with several herbicides commonly used to control this weed. Most of the weed populations were classed as resistant (or developing resistance) to the acetyl-CoA varboxylase (ACCase)-inhibiting herbicide diclofop, while resistance to clodinafop was markedly lower. The results of the pot experiments showed that some of the canary populations were found to have a very high level of diclofop resistance (resistance index up to 12.4), while cross resistance with other herbicides was also common. The levels of resistance and cross resistance patterns among populations varied along with the different amounts and times of selection pressure. Such variation indicated either more than one mechanism of resistance or different resistance mutations in these weed populations. The population which had the highest diclofop resistance level, showed resistance to all aryloxyphenoxypropinate (APP) herbicides applied and non-ACCase inhibitors. Alternative ACCase-inhibiting herbicides, such as pinoxaden remain effective on the majority of the tested canarygrass populations, while the acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron + iodosulfuron could also provide some solutions. Consequently, there is an opportunity to effectively control canarygrass by selecting from a wide range of herbicides. It is the integration of agronomic practices with herbicide application, which helps in effective management ofP. minorand particularly its resistant populations.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


Weed Science ◽  
2019 ◽  
Vol 67 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Federico A. Casale ◽  
Darci A. Giacomini ◽  
Patrick J. Tranel

AbstractIn a predictable natural selection process, herbicides select for adaptive alleles that allow weed populations to survive. These resistance alleles may be available immediately from the standing genetic variation within the population or may arise from immigration via pollen or seeds from other populations. Moreover, because all populations are constantly generating new mutant genotypes by de novo mutations, resistant mutants may arise spontaneously in any herbicide-sensitive weed population. Recognizing that the relative contribution of each of these three sources of resistance alleles influences what strategies should be applied to counteract herbicide-resistance evolution, we aimed to add experimental information to the resistance evolutionary framework. Specifically, the objectives of this experiment were to determine the de novo mutation rate conferring herbicide resistance in a natural plant population and to test the hypothesis that the mutation rate increases when plants are stressed by sublethal herbicide exposure. We used grain amaranth (Amaranthus hypochondriacus L.) and resistance to acetolactate synthase (ALS)-inhibiting herbicides as a model system to discover spontaneous herbicide-resistant mutants. After screening 70.8 million plants, however, we detected no spontaneous resistant genotypes, indicating the probability of finding a spontaneous ALS-resistant mutant in a given sensitive population is lower than 1.4 × 10−8. This empirically determined upper limit is lower than expected from theoretical calculations based on previous studies. We found no evidence that herbicide stress increased the mutation rate, but were not able to robustly test this hypothesis. The results found in this study indicate that de novo mutations conferring herbicide resistance might occur at lower frequencies than previously expected.


2004 ◽  
Vol 44 (12) ◽  
pp. 1195 ◽  
Author(s):  
M. Monjardino ◽  
D. J. Pannell ◽  
S. B. Powles

Most cropping farms in Western Australia must deal with the management of herbicide-resistant populations of weeds such as annual ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Farmers are approaching the problem of herbicide resistance by adopting integrated weed management systems, which allow weed control with a range of different techniques. These systems include non-herbicide methods ranging from delayed seeding and high crop seeding rates to the use of non-cropping phases in the rotation. In this paper, the Multi-species RIM (resistance and integrated management) model was used to investigate the value of including non-cropping phases in the crop rotation. Non-crop options investigated here were haying and green manuring. Despite them providing excellent weed control, it was found that inclusion of these non-cropping phases did not increase returns, except in cases of extreme weed numbers and high levels of herbicide resistance.


Weed Science ◽  
2019 ◽  
pp. 1-6
Author(s):  
Zhaofeng Huang ◽  
Xinxin Zhou ◽  
Chaoxian Zhang ◽  
Cuilan Jiang ◽  
Hongjuan Huang ◽  
...  

Abstract Common lambsquarters (Chenopodium album L.) is one of the most troublesome weeds in soybean [Glycine max (L.) Merr.] and corn (Zea mays L.) fields in northeast China. In 2017, a C. album population that survived imazethapyr at the recommended field rate was collected from a soybean field in Heilongjiang Province in China. Experiments were conducted to determine the basis of resistance to imazethapyr and investigate the herbicide-resistance pattern in C. album. Dose–response tests showed that the resistant population (R) displayed high resistance to imazethapyr (20-fold) compared with the susceptible population (S). An in vitro acetolactate synthase (ALS) activity assay indicated that the ALS of the R population was resistant to imazethapyr compared with the ALS of the S population. Sequence analysis of the ALS gene revealed that the GCA was replaced by ACA at amino acid position 122, which resulted in an alanine to threonine substitution (Ala-122-Thr) in the R population. The R population displayed cross-resistance to thifensulfuron-methyl and flumetsulam but susceptibility to bispyribac-sodium, flucarbazone, glyphosate, mesotrione, and fomesafen. These results confirmed that the basis of imazethapyr resistance in C. album was conferred by the Ala-122-Thr substitution in the ALS enzyme. This is the first report of the target-site basis of ALS-inhibiting herbicide resistance in C. album.


Sign in / Sign up

Export Citation Format

Share Document