Expression profiles of regulatory and helper T-cell-associated genes in nasal polyposis

Allergy ◽  
2012 ◽  
Vol 67 (6) ◽  
pp. 732-740 ◽  
Author(s):  
C. W. Li ◽  
K. K. Zhang ◽  
T. Y. Li ◽  
Z. B. Lin ◽  
Y. Y. Li ◽  
...  
1994 ◽  
Vol 14 (3-4) ◽  
pp. 221-238 ◽  
Author(s):  
Marilyn R. Kehry ◽  
Philip D. Hodgkin

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1365.2-1365
Author(s):  
X. Fan ◽  
D. Guo ◽  
C. T. Ng ◽  
A. Law ◽  
Z. Y. Poon ◽  
...  

Background:Patients with systemic lupus erythematosus (SLE) suffer from severe morbidity and mortality1-4, either from the disease itself or from side effects of immunosuppression5. Discovery of novel effective therapies with less toxicity is an urgent need.Objectives:The aim of this study is to elucidate the therapeutic potential and working mechanism of cytokine CXCL5 in lupus mice.Methods:Treatment with CXCL5, bone marrow (BM)-MSCs, standard of care (SOC) with combination of methylprednisolone and cyclophosphamide was given to 16-week-old Faslprmice. Mice were monitored for 10 weeks. Splenic immune cell subsets were measured by flow cytometry. Circulating cytokine and immunoglobulin were detected by Luminex technology. Renal function was evaluated by urinary spot albumin creatinine ratio. In situ renal immune cell infiltration and complement 3 deposition were detected by Haematoxylin and Eosin (H&E) staining and immunohistochemistry.Results:CXCL5 demonstrated consistent and potent immunosuppressive capacity in suppressing SLE with reduced autoantibody secretion, lymphoproliferation and preserved kidney function. With further exploration, we proved that CXCL5 reduced the proliferation of helper T cells (TH1 and TH2) in thein vitrofunctional assay. When we administrated CXCL5 to lupus mice, it promoted the proliferation of regulatory T cells and reduced the proliferation of TH17 cells, macrophages and neutrophils. Multiple proinflammatory cytokines including IL-2, IL-6, IL-12, IL-17A, KC/CXCL1, MIP-1β/CCL4 and TNF-α were also reduced. When combined with SOC, CXCL5 boosted its therapeutic effect and reduced the relevant indices of disease activity. When we correlated the effect of four different treatment groups (CXCL5, BM-MSCs, SOC, and CXCL5 plus SOC) on mice survival and target cell changes, we found that TH17 cells were the key effector cells involved in the pathogenesis of SLE.Conclusion:These findings demonstrated that CXCL5 dampens inflammation in the pre-clinical model of systemic lupus erythematosus via the orchestral effect of regulating neutrophil trafficking and suppressing helper T cell-mediated immune response. Administrating exogenous CXCL5 might be an attractive option to treat patients with lupus.References:[1]Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice.Cell Physiol Biochem.2012;29(5-6):705-712.[2]Peng SL. Altered T and B lymphocyte signaling pathways in lupus.Autoimmun Rev.2009;8(3):179-183.[3]Ferucci ED, Johnston JM, Gaddy JR, et al. Prevalence and incidence of systemic lupus erythematosus in a population-based registry of American Indian and Alaska Native people, 2007-2009.Arthritis Rheumatol.2014;66(9):2494-2502.[4]Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality.Arthritis Care Res (Hoboken).2012;64(2):159-168.[5]Sattwika PD, Mustafa R, Paramaiswari A, Herningtyas EH. Stem cells for lupus nephritis: a concise review of current knowledge.Lupus.2018;27(12):1881-1897.Acknowledgments:The work was supported by SMART II Centre Grant (NMRC/CG/M011/2017_SGH) and SingHealth Foundation (SHF/FG638P/2016).Disclosure of Interests:None declared


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii312-iii312
Author(s):  
Andrea Griesinger ◽  
Eric Prince ◽  
Andrew Donson ◽  
Kent Riemondy ◽  
Timothy Ritzman ◽  
...  

Abstract We have previously shown immune gene phenotype variations between posterior fossa ependymoma subgroups. PFA1 tumors chronically secrete IL-6, which pushes the infiltrating myeloid cells to an immune suppressive function. In contrast, PFA2 tumors have a more immune activated phenotype and have a better prognosis. The objective of this study was to use single-cell(sc) RNAseq to descriptively characterize the infiltrating myeloid cells. We analyzed approximately 8500 cells from 21 PFA patient samples and used advanced machine learning techniques to identify distinct myeloid and lymphoid subpopulations. The myeloid compartment was difficult to interrupt as the data shows a continuum of gene expression profiles exist within PFA1 and PFA2. Through lineage tracing, we were able to tease out that PFA2 myeloid cells expressed more genes associated with an anti-viral response (MHC II, TNF-a, interferon-gamma signaling); while PFA1 myeloid cells had genes associated with an immune suppressive phenotype (angiogenesis, wound healing, IL-10). Specifically, we found expression of IKZF1 was upregulated in PFA2 myeloid cells. IKZF1 regulates differentiation of myeloid cells toward M1 or M2 phenotype through upregulation of either IRF5 or IRF4 respectively. IRF5 expression correlated with IKZF1, being predominately expressed in the PFA2 myeloid cell subset. IKZF1 is also involved in T-cell activation. While we have not completed our characterization of the T-cell subpopulation, we did find significantly more T-cell infiltration in PFA2 than PFA1. Moving forward these studies will provide us with valuable information regarding the molecular switches involved in the tumor-immune microenvironment and to better develop immunotherapy for PFA ependymoma.


2020 ◽  
Vol 10 (1) ◽  
pp. 1856545
Author(s):  
Ryusuke Hayashi ◽  
Toshihiro Nagato ◽  
Takumi Kumai ◽  
Kenzo Ohara ◽  
Mizuho Ohara ◽  
...  

2010 ◽  
Vol 11 (6) ◽  
pp. 520-526 ◽  
Author(s):  
Georgia Perona-Wright ◽  
Katja Mohrs ◽  
Markus Mohrs

Sign in / Sign up

Export Citation Format

Share Document