scholarly journals EPEN-22. SINGLE-CELL RNA SEQUENCING IDENTIFIES UPREGULATION OF IKZF1 IN PFA2 MYELOID SUBPOPULATION DRIVING AN ANTI-TUMOR PHENOTYPE

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii312-iii312
Author(s):  
Andrea Griesinger ◽  
Eric Prince ◽  
Andrew Donson ◽  
Kent Riemondy ◽  
Timothy Ritzman ◽  
...  

Abstract We have previously shown immune gene phenotype variations between posterior fossa ependymoma subgroups. PFA1 tumors chronically secrete IL-6, which pushes the infiltrating myeloid cells to an immune suppressive function. In contrast, PFA2 tumors have a more immune activated phenotype and have a better prognosis. The objective of this study was to use single-cell(sc) RNAseq to descriptively characterize the infiltrating myeloid cells. We analyzed approximately 8500 cells from 21 PFA patient samples and used advanced machine learning techniques to identify distinct myeloid and lymphoid subpopulations. The myeloid compartment was difficult to interrupt as the data shows a continuum of gene expression profiles exist within PFA1 and PFA2. Through lineage tracing, we were able to tease out that PFA2 myeloid cells expressed more genes associated with an anti-viral response (MHC II, TNF-a, interferon-gamma signaling); while PFA1 myeloid cells had genes associated with an immune suppressive phenotype (angiogenesis, wound healing, IL-10). Specifically, we found expression of IKZF1 was upregulated in PFA2 myeloid cells. IKZF1 regulates differentiation of myeloid cells toward M1 or M2 phenotype through upregulation of either IRF5 or IRF4 respectively. IRF5 expression correlated with IKZF1, being predominately expressed in the PFA2 myeloid cell subset. IKZF1 is also involved in T-cell activation. While we have not completed our characterization of the T-cell subpopulation, we did find significantly more T-cell infiltration in PFA2 than PFA1. Moving forward these studies will provide us with valuable information regarding the molecular switches involved in the tumor-immune microenvironment and to better develop immunotherapy for PFA ependymoma.

2021 ◽  
Author(s):  
Xuefei Wang ◽  
Xiangru Shen ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

AbstractClassic T cell subsets are defined by a small set of cell surface markers, while single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets remain unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve and CD8 Naïve were mainly clustered into their scCPop counterparts, while cells from the other T cell subsets were assigned to multiple scCPops including mucosal-associated invariant T cells and natural killer T cells. The multiple T cell subsets that form a single scCPop exhibited similar expression pattern, but not vice versa, indicating scCPops are much homogeneous cell populations with similar cell states. Interestingly, we discovered and named IFNhi T, a new T cell subpopulation that highly expressed Interferon Signaling Associated Genes (ISAGs). We further enriched IFNhi T by FACS sorting of BST2 for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE plot after removing ISAGs, while IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ T cells and BST2− T cells showing different efficiencies of T cell activation indicates high level of ISAGs may contribute to quick immune responses.


2020 ◽  
Author(s):  
Xiangru Shen ◽  
Xuefei Wang ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

Abstract Single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets is unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve, CD8 Naïve and CD4 memory were mainly clustered into their scCPop counterparts, while the other T cell subsets were clustered into multiple scCPops including unexpected mucosal-associated invariant T cell and natural killer T cell. Most interestingly, we discovered a new T cell type that highly expressed Interferon Signaling Associated Genes (ISAGs), namely IFNhi T. We further enriched IFNhi T for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE after removing ISAGs, and IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ cells and BST2- cells showing different efficiencies of T cell activation indicates high ISAGs may contribute to quick immune responses.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii108-ii109
Author(s):  
Alexander Lee ◽  
Aaron Mochizuki ◽  
Frances Chow ◽  
Jeremy Reynoso ◽  
Joey Orpilla ◽  
...  

Abstract INTRODUCTION Neoadjuvant anti-PD1 therapy (neo-aPD1) was previously shown to significantly increase the survival of recurrent glioblastoma patients in a small randomized clinical trial. However, neo-aPD1 alone was not curative so defining the limitations of neo-aPD1 and discovering where other immunotherapies can be used alongside neo-aPD1 is needed. METHODS To understand how immune cells in the tumor microenvironment change with neo-aPD1, we used single-cell RNAsequencing to analyze cells from 27 glioma patients (n = 105,143 cells) of which 9 patients had received neo-aPD1 (n = 33,325 cells). Using unsupervised clustering and pseudotime trajectory analysis, we characterized the transcriptional changes within immune cells and how these populations changed with therapy. RESULTS We defined the immune landscape of the glioblastoma tumor microenvironment. Compared to no immunotherapy treatment, neo-aPD1 significantly increased the ratio of T cells to myelo-monocytic cells and led to significant increases in the effector and memory T cell populations but no significant changes in myeloid cell composition. Our differential gene expression analysis of the myeloid compartment showed significant increases in interferon-γ-responsive genes and down-regulation of genes associated with M2 macrophages and MDSCs, suggestive that neo-aPD1 influences the transcriptional profile of myeloid cells in the tumor microenvironment. Interestingly, our psuedotime trajectory analysis showed that neo-aPD1 was associated with cells expressing both lymphoid and myeloid-related genes, which we theorized to actually be lymphoid-myeloid cell doublets caused by increased interactions between myeloid and lymphoid cells. These doublets were highly enriched in MHC I and II, macrophage, T cell, and T cell activation and exhaustion genes indicating that neo-aPD1 may result in some adaptive immunosuppressive mechanism by increasing these interactions. This could explain why neo-aPD1 alone is not curative for glioblastoma patients. CONCLUSIONS In total, neoadjuvant anti-PD1 therapy enhances effector T cell activity, but may concomitantly induce adaptive resistance mediated by myeloid cells in glioblastoma.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i14-i15
Author(s):  
Andrea Griesinger ◽  
Kent Riemondy ◽  
Andrew Donson ◽  
Nicholas Willard ◽  
Eric Prince ◽  
...  

Abstract We have previously shown immune gene phenotype variations between posterior fossa ependymoma subgroups. PFA1 tumors chronically secrete IL-6, which induces secretion of myeloid cell IL-8 and pushes the infiltrating myeloid cells to an immune suppressive function. In contrast, PFA2 tumors have a more immune activated phenotype associated with a better prognosis. The objective of this study was to use single-cell(sc) RNAseq to descriptively characterize the infiltrating myeloid cells. We analyzed approximately 8500 cells from 21 PFA patient samples. Using advanced machine learning, we identified eight myeloid cell subpopulations with unique gene expression profiles. Interestingly, only one subpopulation was significantly enriched in PFA1 tumors. This subpopulation, denoted as the hypoxia myeloid subpopulation, was defined by genes associated with angiogenesis, response to hypoxia, wound healing, cell migration, neutrophil activation and response to oxygen levels. These myeloid cells also share similar gene expression profile to a mesenchymal tumor subpopulation (MEC) enriched in PFA1 and associated with poor outcome in EPN patients. This tumor subpopulation was the only population expressing IL-6. Using immunohistochemistry, we found the hypoxia myeloid located in regions of tumor necrosis and perivascular niches. The MEC cells were also more abundant in these regions. In an independent single-cell cytokine release assay, we identified eight subpopulations of functional myeloid cells. One subpopulation significantly secreted IL-8, which represented the hypoxia subpopulation based on IL-8 gene expression in the scRNAseq dataset. This data suggests the tumor necrosis resulting in the development of MEC tumor subpopulation is driving the immune suppressive myeloid phenotype in PFA1 tumors through polarization of myeloid cells to the hypoxia subpopulation. Further studies are needed to determine how these myeloid cells interact with the lymphocyte subpopulations and whether they contribute to the progression of PFA1 EPN.


2021 ◽  
Vol 9 (1) ◽  
pp. e001615
Author(s):  
Rachel A Woolaver ◽  
Xiaoguang Wang ◽  
Alexandra L Krinsky ◽  
Brittany C Waschke ◽  
Samantha M Y Chen ◽  
...  

BackgroundAntitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences.MethodsWe developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes.ResultsWe discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status.ConclusionsWe reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.


Nature ◽  
2021 ◽  
Author(s):  
Justina X. Caushi ◽  
Jiajia Zhang ◽  
Zhicheng Ji ◽  
Ajay Vaghasia ◽  
Boyang Zhang ◽  
...  

AbstractPD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a ‘barcode’ to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein–Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. eaay0524 ◽  
Author(s):  
Mohamed A. ElTanbouly ◽  
Yanding Zhao ◽  
Elizabeth Nowak ◽  
Jiannan Li ◽  
Evelien Schaafsma ◽  
...  

Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.


1986 ◽  
Vol 164 (3) ◽  
pp. 911-925 ◽  
Author(s):  
J Goronzy ◽  
C M Weyand ◽  
C G Fathman

mAbs directed against the L3T4 molecule administered in vivo caused a severe and long lasting helper cell depletion in mice. Regeneration of the L3T4+ subpopulation occurred gradually (2-3 mo) after a single antibody treatment. Experiments were designed to examine the humoral immunocompetence of such anti-L3T4-treated animals during and after regeneration of the L3T4+ T cell subset. The animals were injected with anti-L3T4, immunized with soluble antigen, and challenged with antigen every 2 wk. Antibody responses to two antigens, sperm whale myoglobin (SpWMb) and KLH, which differ with regard to their immunogenicity, were compared. The lack of humoral immune responsiveness to either of these two antigens shorty after anti-L3T4 treatment responsiveness to either of these two antigens shortly after anti-L3T4 treatment was probably due to clonal depletion. The anti-L3T4-induced immunosuppressive effect on antibody production seemed to be determined in part by the preexisting T cell repertoire, as was suggested by the recovery of responsiveness to the highly immunogenic antigen KLH and the transient inhibitory effect of anti-L3T4 treatment in primed animals. The regenerating L3T4+ T cell subpopulation was relatively incompetent in initiating B cell responses. More than 40% of the L3T4+ T cell compartment had to recover to provide help for the production of anti-KLH antibodies, whereas elimination of 90% of the L3T4+ helper cells did not inhibit a primary anti-KLH response. Evidence for a heterogeneous composition of the L3T4+ subset came from experiments using rIL-2 in vivo. The addition of rIL-2 during early helper cell depletion improved the recovery of the humoral responsiveness without apparently affecting the kinetics of the regeneration of L3T4+ T cells. Interestingly, humoral unresponsiveness to the weakly immunogenic antigen SpWMb persisted for at least 120 d. This long lasting unresponsiveness could not be explained by clonal depletion, and suggested as one possibility that the presence of antigen during regeneration of the L3T4+ helper cell population may have influenced the ultimate T cell repertoire.


2021 ◽  
Vol 118 (23) ◽  
pp. e2103730118
Author(s):  
Yuka Nakajima ◽  
Kenji Chamoto ◽  
Takuma Oura ◽  
Tasuku Honjo

CD8+ T cells play a central role in antitumor immune responses that kill cancer cells directly. In aged individuals, CD8+ T cell immunity is strongly suppressed, which is associated with cancer and other age-related diseases. The mechanism underlying this age-related decrease in immune function remains largely unknown. This study investigated the role of T cell function in age-related unresponsiveness to PD-1 blockade cancer therapy. We found inefficient generation of CD44lowCD62Llow CD8+ T cell subset (P4) in draining lymph nodes of tumor-bearing aged mice. In vitro stimulation of naive CD8+ T cells first generated P4 cells, followed by effector/memory T cells. The P4 cells contained a unique set of genes related to enzymes involved in one-carbon (1C) metabolism, which is critical to antigen-specific T cell activation and mitochondrial function. Consistent with this finding, 1C-metabolism–related gene expression and mitochondrial respiration were down-regulated in aged CD8+ T cells compared with young CD8+ T cells. In aged OVA-specific T cell receptor (TCR) transgenic mice, ZAP-70 was not activated, even after inoculation with OVA-expressing tumor cells. The attenuation of TCR signaling appeared to be due to elevated expression of CD45RB phosphatase in aged CD8+ T cells. Surprisingly, strong stimulation by nonself cell injection into aged PD-1–deficient mice restored normal levels of CD45RB and ameliorated the emergence of P4 cells and 1C metabolic enzyme expression in CD8+ T cells, and antitumor activity. These findings indicate that impaired induction of the P4 subset may be responsible for the age-related resistance to PD-1 blockade, which can be rescued by strong TCR stimulation.


Sign in / Sign up

Export Citation Format

Share Document