scholarly journals The role of ABF family bZIP class transcription factors in stress response

2005 ◽  
Vol 0 (0) ◽  
pp. 051129032003001-??? ◽  
Author(s):  
Soo Young Kim
2002 ◽  
Vol 183 (4) ◽  
pp. 372-383 ◽  
Author(s):  
Timothy Pritts ◽  
Eric Hungness ◽  
Quan Wang ◽  
Bruce Robb ◽  
Dan Hershko ◽  
...  

2010 ◽  
Vol 8 (3) ◽  
pp. 67-80 ◽  
Author(s):  
Aleksey A Moskalev ◽  
Olga A Malysheva

It was investigated the role of stress-response genes (dFOXO, dSir2, Hsp70) in regulation of life span of Drosophila in response to light regime alteration. It was revealed the FOXO-dependant mechanism of lifespan increasing at darkness conditions. The distance of lifespan of FOXO homozygous mutants at different light conditions were absent 3 times from 4 times. It was shown, that homozygotes with deletion of dSir2 have more significant difference between lifespan at standard light and darkness conditions with comparing to wild type and heterozygous strain. The same tendency was also detected the in the strains with Hsp70 deletions. It was produced the evidences of two mechanisms of light regime influence on lifespan: metabolism intensification at light conditions and neuroendocrine-determinated lifespan increasing at darkness conditions.


2021 ◽  
Vol 28 ◽  
Author(s):  
Asim Rizvi ◽  
Mohd. Farhan ◽  
Faisal Nabi ◽  
Rizwan Hasan Khan ◽  
Mohd. Adil ◽  
...  

: Oxidative stress response is critical for the malignant cells. It plays dual role by helping cancer cells survive and proliferate but also causing apoptosis and apoptosis like cell death. The oxidative stress response is characterized by a tight regulation of gene expression by a series of transcription factors (OSRts; oxidative stress response transcription factors). In this communication, we review the role of OSRts, notably NRF2 and p53 as well as other transcription factors, that modulate the response. We discuss how the oxidative stress response is hierarchal and controls ‘live or die’ signals. This is followed by a discussion on how plant derived molecules, including polyphenols, which are described both as prooxidants and antioxidants within the cancer cells, have been reported to affect the activities of OSRts. Deriving an example from preliminary data from our group, we discuss how plant derived molecules might modulate the oxidative stress response by causing structural perturbations in the proteinacious transcription factors, notably Nrf2 and p53. We look at this information in the light of understanding how plant derived molecules maybe used as lead compounds to develop modulators of the oxidative stress response.


Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
HM Al-Tamari ◽  
M Eschenhagen ◽  
A Schmall ◽  
R Savai ◽  
HA Ghofrani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document