scholarly journals Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro

2007 ◽  
Vol 102 (2) ◽  
pp. 441-453 ◽  
Author(s):  
Floriana Volpicelli ◽  
Massimiliano Caiazzo ◽  
Dario Greco ◽  
Claudia Consales ◽  
Luigi Leone ◽  
...  
2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Daren Liu ◽  
Yun Jin ◽  
Jinhong Wu ◽  
Huanbing Zhu ◽  
Dan Ye

AbstractKLF4 is implicated in tumor progression of pancreatic cancer, but the molecular regulatory mechanism of KLF4 needs to be further specified. We aimed to probe molecular regulatory mechanism of KLF4 in malignant progression of pancreatic cancer. qRT-PCR or western blot was completed to test levels of predicted genes. Dual-luciferase and chromatin immunoprecipitation (ChIP) assays were designed to validate binding between genes. Cell viability and oncogenicity detection were used for in vitro and vivo functional assessment. KLF4 was a downstream target of miR-135b-5p. KLF4 could regulate GPRC5A level. MiR-135b-5p was notably increased in cancer cells, and overexpressing KLF4 functioned a tumor repressive role, which could be restored by miR-135b-5p. Besides, cell malignant phenotypes could be inhibited through reducing miR-135b-5p level, but they were restored by GPRC5A. Our results stressed that KLF4, as a vital target of miR-135b-5p, could influence promoter region of GPRC5A, thus affecting the malignant progression of pancreatic cancer.


2013 ◽  
Vol 40 (1) ◽  
pp. 43
Author(s):  
Xiao-Meng ZHAO ◽  
Cheng WANG ◽  
Xiao-Feng LI ◽  
Xiao-Ting ZHANG ◽  
Xi-Zhi LIU ◽  
...  

2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 19.1-19
Author(s):  
R. Symons ◽  
F. Colella ◽  
F. Collins ◽  
A. Roelofs ◽  
C. De Bari

Background:In rheumatoid arthritis (RA), the fibroblast-like synoviocytes (FLS) in synovial lining become invasive and cause joint destruction. The molecular mechanisms underpinning this pathogenic FLS phenotype are incompletely understood. The FLS descend from Growth differentiation factor 5 (Gdf5)-expressing joint interzone cells in the embryo, and we showed that conditional ablation of the transcriptional co-activator Yes associated protein (Yap) in Gdf5-lineage cells prevents synovial lining hyperplasia after traumatic cartilage injury in mice [1].Objectives:Here, we investigated a potential role for Yap in pathogenic FLS in immune-mediated inflammatory arthritis.Methods:Immunohistochemistry was used to detect Yap in human RA synovium and Yap, Snail and Ctgf in mouse synovium following antigen-induced arthritis (AIA). To determine the effect of Yap knockout (KO) in synovial stromal cells, AIA was induced in Gdf5-Cre;tdTomato;Yapfl/fl (Yap cKO) and Gdf5-Cre;tdTomato;Yapwt/wt (control) mice, or in Pdgfrα-CreER;Yapfl/fl (Yap ciKO, targeting Pdgfrα-expressing fibroblasts) and Yapfl/fl or YapWT/fl (control) mice after adult tamoxifen induction. Yap KO in both models was confirmed by immunohistochemistry. After nine days, arthritis severity was determined by histological scoring of synovial lining hyperplasia, immune infiltrates, cellular exudate, and marginal erosions. TdTomato+ Gdf5-lineage cells in synovium were quantified. In vitro, Yap reporter cells were treated with inflammatory cytokines to evaluate their ability to stimulate Yap-induced GFP expression by flow cytometry. Snail overexpression, siRNA-mediated Yap knockdown, and IL-6/sIL-6R stimulation were performed on normal mouse FLS, AIA-FLS or human RA-FLS, and cell invasion through a matrigel-coated transwell was quantified. A proximity ligation assay was utilised to detect Yap/Snail complex formation.Results:Average expression levels of Yap (p<0.0001), its transcription factor partner Snail (p=0.002), and their downstream target Ctgf (p=0.0003), were increased in mouse synovium after AIA (n=5), and Yap was highly expressed by FLS in human RA synovium. Yap cKO mice (n=24) showed a significantly decreased arthritis severity (p=0.002) after AIA compared to controls (n=22), with significant reductions in synovial lining hyperplasia (p<0.001), synovial immune cell infiltrates (p=0.026) and marginal erosions (p=0.002). Similarly, Yap ciKO mice (n=6) showed a significant decrease in arthritis score (p=0.039) after AIA compared to controls (n=9). However, both control mice (p<0.001) and Yap cKO mice (p<0.001) showed an extensive expansion of tdTomato+ Gdf5-lineage synovial cells after AIA, with no significant difference between control and Yap cKO mice. In vitro, Yap knockdown prevented IL-6/sIL-6R-induced invasion of normal mouse FLS (p=0.037) and decreased the invasiveness of AIA-FLS (p=0.0057). Using Yap reporter cells, we found that Yap was activated by IL-6/sIL-6R (p=0.016), but not TNFα or IL-1β. Finally, IL-6/sIL-6R treatment of normal mouse FLS (p=0.033) or human RA-FLS (p=0.036) induced Yap-Snail complex formation, and Yap knockdown prevented FLS invasion induced by Snail overexpression (p=0.027).Conclusion:These data demonstrate that via activation by IL-6, and co-operation with the transcription factor Snail, Yap acts as a key modulator of the invasive and destructive phenotype of FLS in inflammatory arthritis. Therapeutic targeting of Yap could reduce joint destruction in RA.References:[1]A. J. Roelofs et al., “Joint morphogenetic cells in the adult mammalian synovium,” Nat. Commun., vol. 8, no. May, p. 15040, 2017. DOI: 10.1136/annrheumdis-2018-213799Acknowledgements:This work was funded by the Medical Research Council (MR/L020211/1 and MR/L022893/1) and Versus Arthritis (20775 and 21156).Disclosure of Interests:None declared


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


Sign in / Sign up

Export Citation Format

Share Document