Are Ericoid Mycorrhizas a Factor in the Success of Calluna vulgaris Heathland Restoration?

2006 ◽  
Vol 14 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Anita Diaz ◽  
Iain Green ◽  
Marianne Benvenuto ◽  
Mark Tibbett
2019 ◽  
Vol 2 (2) ◽  
pp. 96-101
Author(s):  
Kota Noda ◽  
Eisuke Kato ◽  
Jun Kawabata

Diabetes is a chronic disease characterized by elevated blood glucose level.Reducing carbohydrate absorption from the intestinal tract is an effective strategy to control post-meal blood glucose level. Inhibition of intestinal α-glucosidase, involved in digestion of carbohydrates, is known as an approach to accomplish this. On the other hand, reduction of α-glucosidase amount is expected to work in the similar manner. However, none of the previousstudy pursues this approach. A convenient assay was developed to evaluate α-glucosidase amount employing Caco-2 cells, the intestinal epithelial cell model reported to express α-glucosidase. Sixty plants were screened and two candidate plants, Calluna vulgaris and Perilla frutescens var. crispa were found to reduce α-glucosidase expression. C. vulgaris extract was subjected to activity guided isolation. Proanthocyanidin was identified as the active principle which was analyzed by thiol decomposition to reveal the components as a mixture ofcatechin, epicatechin, epigallocatechin, and A type procyanidin dimer. The proanthocyanidin suppressed about 30% of α-glucosidase amount evaluated through convenient assay, and suppressed bulk of mRNA expression level of sucrase-isomaltase (SI) at 0.125 mg/mL. Several flavan-3-ol monomers were also tested, and epicatechin gallate and epigallocatechin gallate were found to suppress α-glucosidase amount significantly.


1998 ◽  
Vol 138 (4) ◽  
pp. 663-673 ◽  
Author(s):  
S. A. POWER ◽  
M. R. ASHMORE ◽  
D. A. COUSINS ◽  
L. J. SHEPPARD

Author(s):  
Adam Rajsz ◽  
Bronisław Wojtuń ◽  
Aleksandra Samecka-Cymerman ◽  
Paweł Wąsowicz ◽  
Lucyna Mróz ◽  
...  

AbstractThis investigation was conducted to identify the content of metals in Calluna vulgaris (family Ericaceae), Empetrum nigrum (family Ericaceae), Festuca vivipara (family Poaceae) and Thymus praecox subsp. arcticus (family Lamiaceae), as well as in the soils where they were growing in eight geothermal heathlands in Iceland. Investigation into the vegetation of geothermal areas is crucial and may contribute to their proper protection in the future and bring more understanding under what conditions the plants respond to an ecologically more extreme situation. Plants from geothermally active sites were enriched with metals as compared to the same species from non-geothermal control sites (at an average from about 150 m from geothermal activity). The enriched metals consisted of Cd, Co, Cu, Fe and Ni in C. vulgaris; Cd, Mn and Ti in E. nigrum; Hg and Pb in F. vivipara; and Cd, Fe and Hg in T. praecox. Notably, C. vulgaris, E. nigrum, F. vivipara and T. praecox had remarkably high concentrations of Ti at levels typical of toxicity thresholds. Cd and Pb (except for C. vulgaris and F. vivipara) were not accumulated in the shoots of geothermal plants. C. vulgaris from geothermal and control sites was characterised by the highest bioaccumulation factor (BF) of Ti and Mn; E. nigrum and F. vivipara by the highest BF of Ti and Cr; and T. praecox by the highest BF of Ti and Zn compared to the other elements. In comparison with the other examined species, F. vivipara from geothermal sites had the highest concentration of Ti in above-ground parts at any concentration of plant-available Ti in soil.


2021 ◽  
Author(s):  
Mathilde Borg Dahl ◽  
Derek Peršoh ◽  
Anke Jentsch ◽  
Jürgen Kreyling

AbstractWinter temperatures are projected to increase in Central Europe. Subsequently, snow cover will decrease, leading to increased soil temperature variability, with potentially different consequences for soil frost depending on e.g. altitude. Here, we experimentally evaluated the effects of increased winter soil temperature variability on the root associated mycobiome of two plant species (Calluna vulgaris and Holcus lanatus) at two sites in Germany; a colder and wetter upland site with high snow accumulation and a warmer and drier lowland site, with low snow accumulation. Mesocosm monocultures were set-up in spring 2010 at both sites (with soil and plants originating from the lowland site). In the following winter, an experimental warming pulse treatment was initiated by overhead infrared heaters and warming wires at the soil surface for half of the mesocosms at both sites. At the lowland site, the warming treatment resulted in a reduced number of days with soil frost as well as increased the average daily temperature amplitude. Contrary, the treatment caused no changes in these parameters at the upland site, which was in general a much more frost affected site. Soil and plant roots were sampled before and after the following growing season (spring and autumn 2011). High-throughput sequencing was used for profiling of the root-associated fungal (ITS marker) community (mycobiome). Site was found to have a profound effect on the composition of the mycobiome, which at the upland site was dominated by fast growing saprotrophs (Mortierellomycota), and at the lowland site by plant species-specific symbionts (e.g. Rhizoscyphus ericae and Microdochium bolleyi for C. vulgaris and H. lanatus respectively). The transplantation to the colder upland site and the temperature treatment at the warmer lowland site had comparable consequences for the mycobiome, implying that winter climate change resulting in higher temperature variability has large consequences for mycobiome structures regardless of absolute temperature of a given site.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 657
Author(s):  
José María Encinar ◽  
Juan Félix González ◽  
Sergio Nogales-Delgado

On account of the continuous decrease in oil reserves, as well as the promotion of sustainable policies, there is an increasing interest in biomass conversion processes, which imply the search for new raw materials as energy sources, like forestry and agricultural wastes. On the other hand, gasification seems to be a suitable thermal conversion process for this purpose. This work studied the thermogravimetry of the steam gasification of charcoal from heather (Calluna vulgaris) in order to determine the kinetics of the process under controlled reaction conditions. The variables studied were temperature (from 750 to 900 °C), steam partial pressure (from 0.26 to 0.82 atm), initial charcoal mass (from 50 to 106 mg), particle size (from 0.4 to 2.0 mm), N2 and steam volumetric flows (from 142 to 446 mL·min−1) and catalyst (K2CO3) concentration (from 0 to 10% w/w). The use of the shrinking core model and uniform conversion model allowed us to determine the kinetic parameters of the process. As a result, a positive influence of catalyst concentration was found up to 7.5% w/w. The kinetic study of the catalytic steam gasification showed activation energies of 99.5 and 114.8 kJ·mol−1 and order of reactions (for steam) of 1/2 and 2/3.


1975 ◽  
Vol 42 (3) ◽  
pp. 275-278 ◽  
Author(s):  
P. Barclay-Estrup ◽  
C.H. Gimingham
Keyword(s):  

2008 ◽  
Vol 148 (6-7) ◽  
pp. 893-901 ◽  
Author(s):  
M.R. Jones ◽  
J.A. Raven ◽  
I.D. Leith ◽  
J.N. Cape ◽  
R.I. Smith ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Maria João Pereira ◽  
Helena Fagundo ◽  
Tiago Menezes ◽  
João Couto

This work investigates the potential propagation by seed and cuttings of the Azorean nativeCalluna vulgaris(L.) Hull. for landscape conservation. With that purpose we have performed several germination and cuttings trials, using plant material from wild populations of this species. In the germination trials, we tested the effects of photoperiod length (8 and 16 h), temperature (10, 15, 20, and 20–10°C), seed age (6, 108, and 270 days), temperature of seed storage (4°C and room temperature), and seed surface sterilization on the germination characteristics. In the cuttings trials, we tested the effects of stem cutting type, cultural conditions, cuttings’ harvest month, and rooting substrates on the rooting percentages. The best percentages of germination, 93 and 90%, were obtained with fresh seeds and surface sterilized and sown under an 8 h photoperiod and with temperatures of 10°C or 15°C, respectively; germination after seed storage during 270 days is significantly superior (71%) when seeds are stored at 4°C. The best percentages of rooting were achieved for straight (96%) or heel cuttings (90%) harvested in March, planted on soil from natural stands ofC. vulgarisandErica azoricaHochst., outdoors in half shade, and partially covered with transparent polyethylene film.


Sign in / Sign up

Export Citation Format

Share Document