Search for Compounds Suppressing Intestinal α-Glucosidase Expression in Caco-2 Cells

2019 ◽  
Vol 2 (2) ◽  
pp. 96-101
Author(s):  
Kota Noda ◽  
Eisuke Kato ◽  
Jun Kawabata

Diabetes is a chronic disease characterized by elevated blood glucose level.Reducing carbohydrate absorption from the intestinal tract is an effective strategy to control post-meal blood glucose level. Inhibition of intestinal α-glucosidase, involved in digestion of carbohydrates, is known as an approach to accomplish this. On the other hand, reduction of α-glucosidase amount is expected to work in the similar manner. However, none of the previousstudy pursues this approach. A convenient assay was developed to evaluate α-glucosidase amount employing Caco-2 cells, the intestinal epithelial cell model reported to express α-glucosidase. Sixty plants were screened and two candidate plants, Calluna vulgaris and Perilla frutescens var. crispa were found to reduce α-glucosidase expression. C. vulgaris extract was subjected to activity guided isolation. Proanthocyanidin was identified as the active principle which was analyzed by thiol decomposition to reveal the components as a mixture ofcatechin, epicatechin, epigallocatechin, and A type procyanidin dimer. The proanthocyanidin suppressed about 30% of α-glucosidase amount evaluated through convenient assay, and suppressed bulk of mRNA expression level of sucrase-isomaltase (SI) at 0.125 mg/mL. Several flavan-3-ol monomers were also tested, and epicatechin gallate and epigallocatechin gallate were found to suppress α-glucosidase amount significantly.

2020 ◽  
Vol 21 (6) ◽  
pp. 471-478
Author(s):  
Shenjia Huang ◽  
Qingqing Xu ◽  
Linsheng Liu ◽  
Yicong Bian ◽  
Shichao Zhang ◽  
...  

Background: Green tea can inhibit OATPs, so it may interact with the substrate of OATPs, such as rosuvastatin. Objective: This study aimed to investigate the effects of green tea on the pharmacokinetics of rosuvastatin and its mechanism. Methods: Male Sprague-Dawley rats received different doses of green tea extract (GTE) and (-)- epigallocatechin-3- gallate (EGCG). Caco-2 cells and OATP1B1-HEK293T cells were used in drug uptake and transport assay. The matrix concentrations of rosuvastatin and catechins were determined by ultra-performance liquid chromatographytandem mass spectrometry (UPLC-MS/MS). Results: GTE and EGCG were both found to increase the area under the plasma concentration-time curve (AUC0-∞) of rosuvastatin ((p<0.050). In the Caco-2 cell model, the uptake and transport of rosuvastatin in the GTE groups were 1.94-fold (p<0.001) and 2.11-fold (p<0.050) higher, respectively, than those of the control group. However, in the EGCG group, the uptake and transport of rosuvastatin were decreased by 22.62% and 44.19%, respectively (p<0.050). In the OATP1B1- HEK293T cell model, the OATP1B1-mediated rosuvastatin uptake was decreased by GTE to 35.02% of that in the control (p<0.050) and was decreased by EGCG to 45.61% of that in the control (p<0.050). Conclusion: GTE increased the systemic rosuvastatin exposure in rats. The mechanism may include an increase in rosuvastatin absorption and a decrease in liver distribution by inhibiting OATP1B1. EGCG may be the main ingredient of green tea that affects the pharmacokinetic parameters of rosuvastatin. Our results showed the importance of conducting green tea-rosuvastatin study.


2019 ◽  
Vol 15 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Satheesh Babu Natarajan ◽  
Suriyakala Perumal Chandran ◽  
Sahar Husain Khan ◽  
Packiyaraj Natarajan ◽  
Karthiyaraj Rengarajan

Background: Tea (Camellia sinensis, Theaceae) is the second most consumed beverage in the world. Green tea is the least processed and thus contain rich antioxidant level, and believed to have most of the health benefits. </p><p> Methods: We commenced to search bibliographic collection of peer reviewed research articles and review articles to meet the objective of this study. </p><p> Results: From this study, we found that the tea beverage contains catechins are believed to have a wide range of health benefits which includes neuroprotective, anti-inflammatory, antiulcer, antiviral, antibacterial, and anti-parasitic effects. The four major catechin compounds of green tea are epigallocatechin (EGC), epicatechin (EC), epigallocatechin gallate (EGCG), and epicatechin gallate (ECG), of which EGCG is the major constituent and representing 50-80% of the total catechin content. And also contain xanthine derivatives such as caffeine, theophylline, and theobromine, and the glutamide derivative theanine. It also contains many nutritional components, such as vitamin E, vitamin C, fluoride, and potassium. We sum up the various green tea phytoconstituents, extraction methods, and its medicinal applications. </p><p> Conclusion: In this review article, we have summarized the pharmacological importance of green tea catechin which includes antioxidant potential, anti-inflammatory, antimicrobial, anticancer, antidiabetic and cosmetic application.


2020 ◽  
Vol 16 (7) ◽  
pp. 998-1004
Author(s):  
Aziz H. Rad ◽  
Raana B. Fathipour ◽  
Fariba K. Bidgoli ◽  
Aslan Azizi

Background and Objectives: Tea is considered one of the most consumed drinks around the world and the health benefits of it have recently attracted the attention of different researchers. It has also been proven beneficial in preventing the danger of some diseases like cancer and cardiovascular problems. Further, lipid oxidation is one of the major problems in food products. Considering the above-mentioned issues, the present review focused on various techniques used to extract polyphenols from different kinds of tea, as well as their use in the food industry. Results and Conclusion: Based on our findings in this review, the main components of tea are polyphenols that have health benefits and include catechins, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, gallic acid, flavonoids, flavonols, and theophlavins. From these components, catechin is regarded as the most beneficial component. Many techniques have been discovered and reformed to extract tea compounds such as solvent-based extraction, microwave-assisted water extraction, and ultrasound-assisted extraction techniques. Overall, the microwave-assisted water extraction method is a useful method for extracting tea polyphenols, which may be used in the meat, oil, and dairy industries.


2021 ◽  
Author(s):  
Li Wang ◽  
Xin Huang ◽  
Huijuan Jing ◽  
Xin Ye ◽  
Chao Jiang ◽  
...  

Epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) are the most abundant ester catechins of green tea polyphenols (GTPs) with numerous potential bioactivities, which have a wide application prospect in the...


2021 ◽  
Vol 12 (3) ◽  
pp. 1793-1797
Author(s):  
Priyanka Sirari ◽  
Jigisha Anand ◽  
Devvret ◽  
Ashish Thapliyal ◽  
Nishant Rai

Green tea is credited as one of the world’s healthiest drinks with enriched antioxidants. It is known for its multi-beneficial health benefits against diabetes, blood pressure, hypertension, gastro-intestinal upset and is bestowed with significant antimicrobial potential. There are previous scientific evidence highlighting the antifungal potential of green tea and has identified it as a potential inhibitor of non-albicans Candida species. Lansterol 14-α demethylase (Erg 11) or CYP51 protein belongs to the cytochrome P450 monooxygenase (CYP) superfamily. Erg 11 is involved in ergosterol biosynthesis and has a significant role in azole drug resistance in Candida glabrata. The present study attempted to identify the inhibitory potential of green tea phytocompounds against inhibition of Erg 11 in Candida glabrata using bioinformatics tool viz., autodock vina software. Out of 15 green tea phytocompounds investigated, the study identified, Rutin (-10.5 kcal) Kaempferitrin (-9.4kcal), Epigallocatechin gallate (-10kcal), Epicatechin gallate (-8.7kcal), and Coumaroylquinic acid (-8.6kcal) acid as the potent phytocompounds which showed significant molecular interaction with Erg 11 in Candida glabrata. In attribution to the constant emergence of azole-resistant isolates, this preliminary analysis therefore, indicated the potential of green tea phytocompounds against inhibition of non-albicans Candida specific candidiasis. However, further, in vitro antimicrobial efficacy of these phytocompounds, the dose regime, drug likeliness, and cytotoxic analysis are required to be investigated and validated.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 102 ◽  
Author(s):  
Emanuela Monteiro Coelho ◽  
Marcelo Eduardo Alves Olinda de Souza ◽  
Luiz Claudio Corrêa ◽  
Arão Cardoso Viana ◽  
Luciana Cavalcanti de Azevêdo ◽  
...  

The present work had the objective of producing liqueurs from mango peels (varieties “Haden” and “Tommy Atkins”) by processes of alcoholic maceration and maceration with pectinase, as well as to evaluate bioactive compounds by reversed-phase high-performance liquid chromatography coupled to diode array detection and fluorescence-detection (RP-HPLC/DAD/FD) and in vitro antioxidant activity (AOX), for by-product potential reuse. Alcoholic maceration in wine ethanol (65% v/v) produced liqueurs with higher phytochemical and AOX content. Maceration with pectinase resulted in liqueurs with higher quercetin-3-O-glucopyranoside content. In relation to mango varieties, Haden liqueurs presented higher bioactive content than Tommy Atkins liqueurs. The liqueurs presented high antioxidant activity. The main bioactive compounds found were flavanols (epicatechin-gallate, epigallocatechin-gallate), flavonols (quercetin-3-O-glucopyranoside and rutin), and phenolic acids (gallic acid, o-coumaric acid, and syringic acid). The present study showed that the production of liqueur enabled the recovering of an important part of the bioactive content of mango peels, suggesting an alternative for the recovery of antioxidant substances from this by-product.


2010 ◽  
Vol 78 (11) ◽  
pp. 4511-4522 ◽  
Author(s):  
Jun Okuda ◽  
Naoki Hayashi ◽  
Masashi Okamoto ◽  
Shinji Sawada ◽  
Shu Minagawa ◽  
...  

ABSTRACT The intestinal tract is considered the most important reservoir of Pseudomonas aeruginosa in intensive care units (ICUs). Gut colonization by P. aeruginosa underlies the development of invasive infections such as gut-derived sepsis. Intestinal colonization by P. aeruginosa is associated with higher ICU mortality rates. The translocation of endogenous P. aeruginosa from the colonized intestinal tract is an important pathogenic phenomenon. Here we identify bacterial and host proteins associated with bacterial penetration through the intestinal epithelial barrier. We first show by comparative genomic hybridization analysis that the exoS gene, encoding the type III effector protein, ExoS, was specifically detected in a clinical isolate that showed higher virulence in silkworms following midgut injection. We further show using a silkworm oral infection model that exoS is required both for virulence and for bacterial translocation from the midgut to the hemolymph. Using a bacterial two-hybrid screen, we show that the mammalian factor FXYD3, which colocalizes with and regulates the function of Na,K-ATPase, directly binds ExoS. A pulldown assay revealed that ExoS binds to the transmembrane domain of FXYD3, which also interacts with Na,K-ATPase. Na,K-ATPase controls the structure and barrier function of tight junctions in epithelial cells. Collectively, our results suggest that ExoS facilitates P. aeruginosa penetration through the intestinal epithelial barrier by binding to FXYD3 and thereby impairing the defense function of tight junctions against bacterial penetration.


Sign in / Sign up

Export Citation Format

Share Document