scholarly journals AUXOSPORE FORMATION AND THE MORPHOLOGY OF THE INITIAL CELL OF THE MARINE ARAPHID DIATOM GEPHYRIA MEDIA (BACILLARIOPHYCEAE)1

2004 ◽  
Vol 40 (4) ◽  
pp. 684-691 ◽  
Author(s):  
Shinya Sato ◽  
Tamotsu Nagumo ◽  
Jiro Tanaka
Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


1998 ◽  
Vol 38 (7) ◽  
pp. 19-24 ◽  
Author(s):  
C.-J. Lu ◽  
C. M. Lee ◽  
M.-S. Chung

The comparison of TCE cometabolic removal by methane, toluene, and phenol utilizers was conducted with a series of batch reactors. Methane, toluene, or phenol enriched microorganisms were used as cell source. The initial cell concentration was about 107 cfu/mL. Methane, toluene, and phenol could be readily biodegraded resulting in the cometabolic removal of TCE. Among the three primary carbon sources studied, the presence of phenol provided the best cometabolic removal of TCE. When the concentration of carbon source was 3 mg-C/L, the initial TCE removal rates initiated by methane, toluene, and phenol utilizers were 1.5, 30, and 100 μg/L-hr, respectively. During the incubation period of 80 hours, TCE removal efficiencies were 26% and 96% with the presence of methane and toluene, respectively. However, it was 100% within 20 hours with the presence of phenol. For phenol utilizers, the initial TCE removal rates were about the same, when the phenol concentrations were 1.35, 2.7, and 4.5 mg/L. However, TCE removal was not proportional to the concentrations of phenol. TCE removal was hindered when the phenol concentration was higher than 4.5 mg/L because of the rapid depletion of dissolved oxygen. The presence of toluene also initiated cometabolic removal of TCE. The presence of toluene at 3 and 5 mg/L resulted in similar TCE removal. The initial TCE removal rate was about 95 μg/L-hr at toluene concentrations of 3 and 5 mg/L compared to 20 μg/L-hr at toluene concentration of 1 mg/L.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


Author(s):  
Craig J. Dedman ◽  
Aaron M. King ◽  
Joseph A. Christie-Oleza ◽  
Gemma-Louise Davies

Exposure of Prochlorococcus cultures to research-grade and extracted nano-sized TiO2 at environmentally-relevant and supra-environmental concentrations (1 μg L−1 to 100 mg L−1) results in initial cell decline, followed by full population recovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoko Hiura ◽  
Shige Koseki ◽  
Kento Koyama

AbstractIn predictive microbiology, statistical models are employed to predict bacterial population behavior in food using environmental factors such as temperature, pH, and water activity. As the amount and complexity of data increase, handling all data with high-dimensional variables becomes a difficult task. We propose a data mining approach to predict bacterial behavior using a database of microbial responses to food environments. Listeria monocytogenes, which is one of pathogens, population growth and inactivation data under 1,007 environmental conditions, including five food categories (beef, culture medium, pork, seafood, and vegetables) and temperatures ranging from 0 to 25 °C, were obtained from the ComBase database (www.combase.cc). We used eXtreme gradient boosting tree, a machine learning algorithm, to predict bacterial population behavior from eight explanatory variables: ‘time’, ‘temperature’, ‘pH’, ‘water activity’, ‘initial cell counts’, ‘whether the viable count is initial cell number’, and two types of categories regarding food. The root mean square error of the observed and predicted values was approximately 1.0 log CFU regardless of food category, and this suggests the possibility of predicting viable bacterial counts in various foods. The data mining approach examined here will enable the prediction of bacterial population behavior in food by identifying hidden patterns within a large amount of data.


2007 ◽  
Vol 361-363 ◽  
pp. 1115-1118
Author(s):  
Un Hye Kwon ◽  
Jung Suk Han ◽  
In Young Ryu ◽  
Dae Joon Kim

The initial osteoblast like cell response to bioactive nano-sized hydroxyapatite (HAp) and bioinert zirconia was evaluated with the cell morphology by SEM and cell adhesion proteins by fluorescence microscopy. Surface roughness also measured by a confocal laser microscopy. The surface roughness and topography was almost identical among specimens. The nano-sized HAp specimens showed better initial cell adhesion and activity than bioinert zirconia ceramics.


Sign in / Sign up

Export Citation Format

Share Document