scholarly journals The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells

2011 ◽  
Vol 15 (7) ◽  
pp. 1603-1614 ◽  
Author(s):  
Dilli Ram Bhandari ◽  
Kwang-Won Seo ◽  
Ji-Won Jung ◽  
Hyung-Sik Kim ◽  
Se-Ran Yang ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2021 ◽  
Author(s):  
Li Liu ◽  
Benedict Dirnberger ◽  
Oliver Valerius ◽  
Enikő Fekete-Szücs ◽  
Rebekka Harting ◽  
...  

AbstractFungal Hülle cells with nuclear storage and developmental backup functions are reminiscent of multipotent stem cells. In the soil, Hülle cells nurse the overwintering fruiting bodies of Aspergillus nidulans. The genome of A. nidulans harbors genes for the biosynthesis of xanthones. We show that enzymes and metabolites of this biosynthetic pathway accumulate in Hülle cells under the control of the regulatory velvet complex, which coordinates development and secondary metabolism. Deletion strains blocked in the conversion of anthraquinones to xanthones are delayed in maturation and growth of fruiting bodies. Xanthones are not required for sexual development but exert antifeedant effects on fungivorous animals such as springtails and woodlice. These findings reveal a novel role of Hülle cells in establishing secure niches for A. nidulans by accumulating metabolites with antifeedant activity that protect reproductive structures from animal predators.


2021 ◽  
Vol 22 (20) ◽  
pp. 11035
Author(s):  
Virinder Kaur Sarhadi ◽  
Ravindra Daddali ◽  
Riitta Seppänen-Kaijansinkko

Osteosarcoma (OS) is an aggressive bone tumor that mainly affects children and adolescents. OS has a strong tendency to relapse and metastasize, resulting in poor prognosis and survival. The high heterogeneity and genetic complexity of OS make it challenging to identify new therapeutic targets. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into adipocytes, osteoblasts, or chondroblasts. OS is thought to originate at some stage in the differentiation process of MSC to pre-osteoblast or from osteoblast precursors. MSCs contribute to OS progression by interacting with tumor cells via paracrine signaling and affect tumor cell proliferation, invasion, angiogenesis, immune response, and metastasis. Extracellular vesicles (EVs), secreted by OS cells and MSCs in the tumor microenvironment, are crucial mediators of intercellular communication, driving OS progression by transferring miRNAs/RNA and proteins to other cells. MSC-derived EVs have both pro-tumor and anti-tumor effects on OS progression. MSC-EVs can be also engineered to deliver anti-tumor cargo to the tumor site, which offers potential applications in MSC-EV-based OS treatment. In this review, we highlight the role of MSCs in OS, with a focus on EV-mediated communication between OS cells and MSCs and their role in OS pathogenesis and therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Changxiang Liang ◽  
Guoyan Liang ◽  
Xiaoqing Zheng ◽  
Yongxiong Huang ◽  
Shuaihao Huang ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells that have a strong osteogenic differentiation capacity. However, the molecular mechanism underlying the osteogenic differentiation of MSCs remains largely unknown and thus hinders further development of MSC-based cell therapies for bone repair in the clinic. RSP5, also called NEDD4L (NEDD4-like E3 ubiquitin protein ligase), belongs to the HECT (homologous to E6-AP carboxyl terminus) domain-containing E3 ligase family. Nevertheless, although many studies have been conducted to elucidate the role of RSP5 in various biological processes, its effect on osteogenesis remains elusive. In this study, we demonstrated that the expression of RSP5 was elevated during the osteogenesis of MSCs and positively regulated the osteogenic capacity of MSCs by inducing K63-linked polyubiquitination and activation of the Akt pathway. Taken together, our findings suggest that RSP5 may be a promising target to improve therapeutic efficiency by using MSCs for bone regeneration and repair.


2020 ◽  
Vol 16 (6) ◽  
pp. 1185-1207 ◽  
Author(s):  
Sau Har Lee ◽  
Tamika Reed-Newman ◽  
Shrikant Anant ◽  
Thamil Selvee Ramasamy

Sign in / Sign up

Export Citation Format

Share Document