Copper electrodeposition onto extended surface area electrodes and the treatment of copper-containing waste streams

2005 ◽  
Vol 34 (6) ◽  
pp. 363-368 ◽  
Author(s):  
James W. Evans ◽  
Ran Ding ◽  
Fiona M. Doyle ◽  
V. Jiricny
2019 ◽  
Vol 40 (1) ◽  
pp. 75-84
Author(s):  
Jiri Vondrák ◽  
Marie Sedlarikova ◽  
Petr Dvorak

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 536 ◽  
Author(s):  
Ting Chen ◽  
Yuxuan Li ◽  
Luyan Li ◽  
Yanjie Zhao ◽  
Shuhua Shi ◽  
...  

Improving surface selectivity and maximizing electrode surface area are critical needs for the electroreduction of nitrate. Herein, preferential (100) oriented Pt nanoflowers with an extended surface area were prepared by potentiostatic deposition on carbon cloth (Pt NFs/CC), and then Cu atoms were adsorbed on the Pt NFs (Cu/Pt NFs/CC) for application of nitrate electroreduction. The results reveal that Cu/Pt NFs/CC with 8.7% Cu coverage exhibits a high selectivity for nitrate electroreduction to N2 following two steps: Nitrate firstly converts into nitrite on Cu sites adsorbed on Pt NFs, then nitrite subsequently selective reduction and ammonia oxidation to N2 occur on the large exposed (100) terraces in Pt NFs. In addition, electrocatalytic activity and selectivity of nitrate reduction strongly rely on the Cu surface coverage on Pt NFs, the lower activity of nitrate reduction is displayed with increase of Cu coverage. Accordingly, the selective reduction of nitrate to N2 is feasible at such nanostructured Pt nanoflowers modified with Cu.


2012 ◽  
Vol 1439 ◽  
pp. 127-132 ◽  
Author(s):  
Jin Yong Oh ◽  
Hyun-June Jang ◽  
Won-Ju Cho ◽  
Nezih Pala ◽  
M. Saif Islam

ABSTRACTHighly sensitive electrolyte-insulator-semiconductor (EIS) sensors were realized by the integration of Si nanowires (NWs), which were fabricated by using a simple and economic electroless wet etching technique. EIS sensors with NWs longer than 1 μm were observed to have considerably increased capacitance and high pH sensitivity. The pH sensitivity of the EIS sensor with 3.8 μm long NWs was 60.2 mV/pH, which is higher than the theoretical Nernstian of 59 mV/pH. The EIS sensors with NWs exhibited slightly worse pH hysteresis and drift properties than that of the conventional planar type EIS sensor. The increases in pH sensitivity, hysteresis and drift are attributable to the extended surface area of the EIS sensors enabled by the NWs.


MRS Advances ◽  
2018 ◽  
Vol 3 (36) ◽  
pp. 2137-2142
Author(s):  
Kofi W. Adu ◽  
Paul Armstrong ◽  
Lucas Servera ◽  
David K. Essumang ◽  
Samuel Y. Mensah

ABSTRACTMuch of the global agricultural by products go waste, especially in developing nations where much of their revenues depend on the exports of raw agricultural products. Such waste streams, if converted to “value added” products could serve as additional source of revenue while simultaneously having a positive impact on the socio-economic well being of the people. We present a preliminary investigation on utilizing chemical activation technique and ball milling to convert agricultural waste streams such as cocoa pod, coconut husk, palm midrib and calabash commonly found in Ghana into ultra-high surface area activated carbon. Such activated carbons are suitable for myriads of applications in environmental remediation, climate management, energy storage and conversion systems (batteries and supercapacitors), and improving crop productivity. We achieved BET surface area as high as ∼ 3000 m2/g.


2018 ◽  
Vol 101 (5) ◽  
pp. 1297-1307 ◽  
Author(s):  
Katarzyna Anna Mitura ◽  
Elżbieta Włodarczyk

Abstract Nanoparticles have an extended surface and a large surface area, which is the ratio of the size of the surface area to the volume. A functionalized surface can give rise to more modifications and therefore allows this nanomaterial to have new properties. Fluorescent molecules contain fluorophore, which is capable of being excited via the absorption of light energy at a specific wavelength and subsequently emitting radiation energy of a longer wavelength. A chemically modified surface of nanodiamond (ND; by carboxylation) demonstrated biocompatibility with DNA, cytochrome C, and antigens. In turn, fluorescent nanodiamonds (FNDs) belong to a group of new nanomaterials. Their surface can be modified by joining functional groups such as carboxyl, hydroxyl, or amino, after which they can be employed as a fluorescence agent. Their fluorescent properties result from defects in the crystal lattice. FNDs reach dimensions of 4–100 nm, have attributes such as photostability, long fluorescence lifetimes (10 ns), and fluorescence emission between 600 and 700 nm. They are also nontoxic, chemically inert, biocompatible, and environmentally harmless. The main purpose of this article was to present the medical applications of various types of modified NDs.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
M. Pan ◽  
J.M. Cowley

Electron microdiffraction patterns, obtained when a small electron probe with diameter of 10-15 Å is directed to run parallel to and outside a flat crystal surface, are sensitive to the surface nature of the crystals. Dynamical diffraction calculations have shown that most of the experimental observations for a flat (100) face of a MgO crystal, such as the streaking of the central spot in the surface normal direction and (100)-type forbidden reflections etc., could be explained satisfactorily by assuming a modified image potential field outside the crystal surface. However the origin of this extended surface potential remains uncertain. A theoretical analysis by Howie et al suggests that the surface image potential should have a form different from above-mentioned image potential and also be smaller by several orders of magnitude. Nevertheless the surface potential distribution may in practice be modified in various ways, such as by the adsorption of a monolayer of gas molecules.


Author(s):  
M. Marko ◽  
A. Leith ◽  
D. Parsons

The use of serial sections and computer-based 3-D reconstruction techniques affords an opportunity not only to visualize the shape and distribution of the structures being studied, but also to determine their volumes and surface areas. Up until now, this has been done using serial ultrathin sections.The serial-section approach differs from the stereo logical methods of Weibel in that it is based on the Information from a set of single, complete cells (or organelles) rather than on a random 2-dimensional sampling of a population of cells. Because of this, it can more easily provide absolute values of volume and surface area, especially for highly-complex structures. It also allows study of individual variation among the cells, and study of structures which occur only infrequently.We have developed a system for 3-D reconstruction of objects from stereo-pair electron micrographs of thick specimens.


Sign in / Sign up

Export Citation Format

Share Document