Bicyclic Monoterpene Diols Induce Differentiation of S91 Melanoma and PC 12 Pheochromocytoma Cells by a Cyclic Guanosine-Monophosphate-Dependent Pathway

1999 ◽  
Vol 12 (1) ◽  
pp. 36-47 ◽  
Author(s):  
DAVID A. BROWN ◽  
KRYSTYNA LESIAK ◽  
WU-YUN REN ◽  
KAREN L. STRZELECKI ◽  
ALEXANDER A. KHORLIN
Diabetes ◽  
2012 ◽  
Vol 61 (10) ◽  
pp. 2433-2441 ◽  
Author(s):  
Z. An ◽  
J. J. Winnick ◽  
M. C. Moore ◽  
B. Farmer ◽  
M. Smith ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3340 ◽  
Author(s):  
Cheolmin Jo ◽  
Bumjung Kim ◽  
Somin Lee ◽  
Inhye Ham ◽  
Kyungjin Lee ◽  
...  

Korean plum (Prunus mume (Siebold) Siebold & Zucc.) has long been used as a health food or herbal medicine in Asia. Previous studies have shown that several plants of the genus Prunus have vasodilatory and antihypertensive effects; we hypothesized that P. mume branches may have a vasorelaxant effect. In this study, we evaluated the effects and action mechanism of 70% ethanol extract of P. mume branch (PMB) on isolated rat aortic rings. Inhibitors such as NG-nitro-l-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, methylene blue, indomethacin, atropine, tetraethylammonium chloride, glibenclamide, 4-aminopyridine and BaCl2 were used to investigate the mechanism of vasodilation responsible for the vascular relaxation. PMB (2–30 μg/mL) induced vasorelaxation in the presence of vascular endothelium, and all inhibitors used in this study affected the degree of relaxation. These results suggest that the vasorelaxant effect of PMB is endothelium-dependent and affects the nitric oxide-cyclic guanosine monophosphate pathway, prostacyclin pathway, muscarinic receptor pathway, and potassium channels. Our study explains that PMB may be another approach to hypertension treatment to reduce the burden of cardiovascular disease.


Surgery ◽  
1997 ◽  
Vol 122 (2) ◽  
pp. 196-203 ◽  
Author(s):  
David A Partrick ◽  
Ernest E Moore ◽  
Patrick J Offner ◽  
Carlton C Barnett ◽  
Michael Barkin ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


2019 ◽  
Vol 19 (18) ◽  
pp. 1544-1557 ◽  
Author(s):  
Sijia Xiao ◽  
Qianbin Li ◽  
Liqing Hu ◽  
Zutao Yu ◽  
Jie Yang ◽  
...  

Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.


2020 ◽  
Vol 22 (1) ◽  
pp. 52
Author(s):  
Mirja Koch ◽  
Constanze Scheel ◽  
Hongwei Ma ◽  
Fan Yang ◽  
Michael Stadlmeier ◽  
...  

Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


2021 ◽  
Vol 22 (2) ◽  
pp. 539
Author(s):  
Yüksel Korkmaz ◽  
Behrus Puladi ◽  
Kerstin Galler ◽  
Peer W. Kämmerer ◽  
Agnes Schröder ◽  
...  

Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α1- and β1-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α1- and β1-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α1- and β1-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption.


Sign in / Sign up

Export Citation Format

Share Document