Effects of forage-to-concentrate ratio in prepartum diet on the dry matter intake and milk yield of periparturient cows during hot weather

2006 ◽  
Vol 77 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Yuko KAMIYA ◽  
Mitsuru KAMIYA ◽  
Masahito TANAKA
Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Shulin Liang ◽  
Chaoqun Wu ◽  
Wenchao Peng ◽  
Jian-Xin Liu ◽  
Hui-Zeng Sun

The objective of this study was to evaluate the feasibility of using the dry matter intake of first 2 h after feeding (DMI-2h), body weight (BW), and milk yield to estimate daily DMI in mid and late lactating dairy cows with fed ration three times per day. Our dataset included 2840 individual observations from 76 cows enrolled in two studies, of which 2259 observations served as development dataset (DDS) from 54 cows and 581 observations acted as the validation dataset (VDS) from 22 cows. The descriptive statistics of these variables were 26.0 ± 2.77 kg/day (mean ± standard deviation) of DMI, 14.9 ± 3.68 kg/day of DMI-2h, 35.0 ± 5.48 kg/day of milk yield, and 636 ± 82.6 kg/day of BW in DDS and 23.2 ± 4.72 kg/day of DMI, 12.6 ± 4.08 kg/day of DMI-2h, 30.4 ± 5.85 kg/day of milk yield, and 597 ± 63.7 kg/day of BW in VDS, respectively. A multiple regression analysis was conducted using the REG procedure of SAS to develop the forecasting models for DMI. The proposed prediction equation was: DMI (kg/day) = 8.499 + 0.2725 × DMI-2h (kg/day) + 0.2132 × Milk yield (kg/day) + 0.0095 × BW (kg/day) (R2 = 0.46, mean bias = 0 kg/day, RMSPE = 1.26 kg/day). Moreover, when compared with the prediction equation for DMI in Nutrient Requirements of Dairy Cattle (2001) using the independent dataset (VDS), our proposed model shows higher R2 (0.22 vs. 0.07) and smaller mean bias (−0.10 vs. 1.52 kg/day) and RMSPE (1.77 vs. 2.34 kg/day). Overall, we constructed a feasible forecasting model with better precision and accuracy in predicting daily DMI of dairy cows in mid and late lactation when fed ration three times per day.


2010 ◽  
Vol 39 (7) ◽  
pp. 1548-1557 ◽  
Author(s):  
Nelson Massaru Fukumoto ◽  
Julio Cesar Damasceno ◽  
Fermino Deresz ◽  
Carlos Eugênio Martins ◽  
Antônio Carlos Cóser ◽  
...  

The objective of this study was to evaluate milk yield and composition, dry matter intake, and stocking rate in pastures with tanzania grass (Panicum maximum cv. Tanzânia), star grass (Cynodon nlemfuensis cv. Estrela-Africana), and marandu grass (Brachiaria brizantha cv. Marandu). The grasses were managed in a rotational grazing system with Holstein x Zebu crossbreed cows, with a 30-day resting period and three days of paddock occupation. The pastures were fertilized with 1,000 kg/ha/year using the 20:05:20 (NPK) formula, split in three applications during the rainy season. It was used a complete random block experimental design with three factors being studied and two replications. In the experiment, four cows/paddock were used and, when it was necessary, regulator animals were added in order to obtain a supply of 7% body weight green forage dry matter. The animals were individually fed concentrate at 2 kg/day during the experimental period. Milk yield did not differ among the three grasses, with values of 9.1; 9.1; and 8.7 kg/cow/day for pastures with tanzania grass, star grass and marandu grass, respectively. Similarly, grass did not affect milk chemical composition. Stocking rate was similar among the three grasses, with values of 4.6; 4.5 and 5.0 UA/ha for tanzania grass, star grass and marandu grass, respectively. The highest dry matter intake was observed for tanzania grass with 2.6% of the body weight while stargrass (2.3%) and marandu grass (2.4%) did not differ among each other. The highest dry matter intake on tanzania grass pasture was not reflected on milk yield per animal. Milk yield and composition and stocking rate are similar among the evaluated grasses.


Author(s):  
C.J. Hoogendoorn ◽  
C.W. Holmes ◽  
A.C.P. Chu

Two levels of grazing intensity were unposed on pasture during a spring-time pre-treatment period in two years at Massey University's Dary Cattle Research Unit. The two grazing intensws were lax (L), 2000-2500 kg DMlha residual herbage mass (RHM) and intense (I) 1000-1500 kg DM/ha RHM imposed for 2 grazing rotations. During this period, net herbage accumulation (NHA) on the L swards was approximately twice that on I wards. However, by early summer, NHA was greater on the I than L swards. Subsequently, during the experimental feeding period in early summer, herbage on the I swards contained lower percentages of reproductive tillers, grass stem, and senescent matter, and was of higher digestibllity than herbage on the L wards. Durmg the feedlng period, cows grazing the I wards had greater yields of milk and milk fat than cows on the L wards when offered both generous and restricted daily herbage dry matter allowances. The effect of ward type on dry matter intake (DMI) was dependent on dry matter allowance. However, when a common allowance of leaf was offered, DMI, milk and milk fat yield were not significantly affected by sward type on offer. The results emphasise the importance of maintaining green, leafy swards into late spring and summer in order to maximise milk yield per cow at this time. This was achieved by maintaining a RHM of no more than 1500 kg DMlha throughout spring by imposing sufficiently high stocking rates. Keywords: residual herbage mass, ward characteristics, dry matter allowance, leaf allowance, dry matter intake, milk yield.


2008 ◽  
Vol 17 (4) ◽  
pp. 351 ◽  
Author(s):  
L. KRÍZOVÁ ◽  
J. TRINÁCTÝ ◽  
M. RICHTER

The aim of this study was to determine the influence of leucine supplement in the form of rumen-protected tablets on milk yield and composition and plasma amino acids in four high-yielding lactating Holstein cows. The experiment was carried out as a cross-over procedure and was divided into 4 periods of 14 d (10 d preliminary period and 4 d experimental period). Cows were fed ad libitum a diet based on maize silage, lucerne hay and a supplemental mixture. The diet, defficient in methionine, lysine, and leucine, was supplemented with methionine+lysine (Control) or methionine+lysine+leucine (Leu) in rumen protected form. The dry matter intake, milk yield and milk yield expressed in energy corrected milk did not differ significantly between the treatments. Milk protein content and yield did not show statistically significant variation. The contents and yield of casein, fat, lactose and urea were unaffected by the treatment. Blood metabolites did not vary between the treatments. The introduction of Leu resulted in higher plasma levels of proline (p


2010 ◽  
Vol 55 (No. 11) ◽  
pp. 468-478 ◽  
Author(s):  
K. Poláková ◽  
V. Kudrna ◽  
A. Kodeš ◽  
B. Hučko ◽  
Z. Mudřík

The main aim of this study was to investigate experimentally the effect of different composition of non-structural carbohydrates (NFC) in prepartum feed rations administered to high-yielding dairy cows at a high concentration of NFC in the diet on dry matter intake both before and after parturition and on subsequent milk performance, body condition and physiological traits of rumen fluid and blood. Thirty-six high-yielding dairy cows were allocated into one of the three well-balanced groups (K, O, and C), and each group received a different feeding rations. Feeding rations differed in non-structural carbohydrate (NFC) structure. The "K" (control) group received a feeding ration with NFC in the form of maize starch in particular, while the feeding rations of the other two (experimental) groups contained either (besides maize starch) saccharose from dried sugar beet (the "O" group) or a dominant amount of NFC was in the form of saccharose (the "C" group). After calving, all dairy cows were given the same feeding ration from the first day after parturition. The experiment was conducted for 21 days before and 50 days after calving. FR in the form of total mixed ration was offered ad libitum. Dry matter intake, milk performance, body condition, live weight, and blood and rumen parameters were recorded for the duration of the experiment. Average daily dry matter intake before calving was highest in the "K" group (14.32 kg per head). Differences among groups were statistically significant (P < 0.05). Prepartum dry matter consumption dropped as the rate of saccharose in the diet of cows increased. Dry matter consumption levelled off after calving. Milk yield was also highest in the "K" group (43.71 kg/head/day), but fatness of milk and thus the production of fat corrected milk were lowest in this group. The highest milk fat content (4.10%) and fat corrected milk production (44.03 kg/head/day) were recorded in the "C" group, whereas the highest milk protein concentration was found in the milk of the "O" group. The composition of NFC affected dry matter intake before parturition, but these concentrations did not significantly affect dry matter intake, milk yield, milk composition, live weight, body condition or blood serum and rumen fluid parameters after calving


Sign in / Sign up

Export Citation Format

Share Document