HEAT FLUX SENSORS to MEASURE EFFECTIVE THERMAL CONDUCTIVITY of MULTILAYERED PLASTIC CONTAINERS

1992 ◽  
Vol 16 (4) ◽  
pp. 233-238 ◽  
Author(s):  
C.H. TONG ◽  
S. SHEEN
1971 ◽  
Vol 45 (4) ◽  
pp. 759-768 ◽  
Author(s):  
M. M. R. Williams

The effect of a temperature gradient in a gas inclined at an angle to a boundary wall has been investigated. For an infinite half-space of gas it is found that, in addition to the conventional temperature slip problem, the component of the temperature gradient parallel to the wall induces a net mass flow known as thermal creep. We show that the temperature slip and thermal creep effects can be decoupled and treated quite separately.Expressions are obtained for the creep velocity and heat flux, both far from and at the boundary; it is noted that thermal creep tends to reduce the effective thermal conductivity of the medium.


2000 ◽  
Vol 123 (1) ◽  
pp. 63-64 ◽  
Author(s):  
S. S. Sazhin ◽  
V. A. Gol'dshtein ◽  
M. R. Heikal

Newton's law of cooling is shown to underestimate the heat flux between a spherical body (droplet) and a homogeneous gas after this body is suddenly immersed into the gas. This problem is rectified by replacing the gas thermal conductivity by the effective thermal conductivity. The latter reduces to the gas thermal conductivity in the limit of t→∞, but can be substantially higher in the limit of t→0. In the case of fuel droplet heating in a medium duty truck Diesel engine the gas thermal conductivity may need to be increased by more than 100 percent at the initial stage of calculations to account for transient effects during the process of droplet heating.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012165
Author(s):  
Yu P Zarichnyak ◽  
A Yu Gorbunova ◽  
V A Korablev ◽  
V A Ivanov ◽  
N V Pilipenko ◽  
...  

Abstract A model of a tube with a square cross-section was compiled for the mathematical analysis of the mesotube in Cartesian coordinates, with the selection of an element of a representative volume. To estimate the effective thermal conductivity of the structure, the generalized theory of conductivity with linearization of heat flux streamlines was used. The presence of anisotropy leads to the division of the problem into a separate estimate of the longitudinal and transverse thermal conductivity. The cross-section of the model was divided into elementary sections by a system of auxiliary adiabatic and isothermal planes, then the sections of the model were presented in the form of thermal resistances connected in chains - electrical circuits. Using the analogy of the identity of thermal and electrical resistances, the total conductivity of the sections and the effective thermal conductivity of the structure were determined. This methodology satisfies the test for limit transitions.


2008 ◽  
Vol 49 ◽  
pp. 43-50 ◽  
Author(s):  
P.K. Satyawali ◽  
A.K. Singh ◽  
S.K. Dewali ◽  
Praveen Kumar ◽  
Vinod Kumar

AbstractThis paper presents a sequential evaluation of snow microstructure and its associated thermal conductivity under the influence of a temperature gradient. Temperature gradients from 28 to 45 Km–1 were applied to snow samples having a density range 180–320 kgm–3. The experiments were conducted inside a cold room in a specially designed heat-flux apparatus for a period of 4weeks. A constant heat flux was applied at the base of the heat-flux apparatus to produce a temperature gradient in the snow sample. A steady-state approach was used to estimate the effective thermal conductivity of snow. Horizontal and vertical thick sections were prepared on a weekly basis to obtain snow micrographs. These micrographs were used to obtain snow microstructure using stereological tools. The thermal conductivity was found to increase with increase in grain size, bond size and grain and pore intercept lengths, suggesting a possible correlation of thermal conductivity with snow microstructure. Thermal conductivity increased even though surface area and area fraction of ice were found to decrease. The outcome suggests that changes in snow microstructure have significant control on thermal conductivity even at a constant density.


2000 ◽  
Author(s):  
Y. H. Yan ◽  
J. M. Ochterbeck

Abstract A two-dimensional numerical model was established to study the behavior of a cylindrical capillary pumped loop evaporator under steady-state operations. The influence of heat load, liquid subcooling and effective thermal conductivity of the wick structure on the evaporator performance were studied. It was found that increasing the applied heat flux and degree of liquid subcooling resulted in a decrease the temperature in the liquid core. This helped to prevent the vapor from generating in the liquid core and decreased the length of the two phase region in the wick structure. Decreasing the effective thermal conductivity also decreases the temperature in the liquid core as related to the back wick condition. It was observed that for a given liquid subcooling, a minimum heat flux exists below which vapor will generate in the liquid core and render the evaporator non-operational. It was also observed that for a given heat flux, a minimum required liquid subcooling exists. Vapor may form in the liquid core when the liquid subcooling is less than the minimum value.


2003 ◽  
Vol 125 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Y. H. Yan ◽  
J. M. Ochterbeck

A cylindrical capillary pumped loop evaporator operating under steady-state conditions was studied using a two-dimensional numerical model. Parameters affecting the phase conditions in the wick structure and thermal-fluid behavior in the evaporator liquid core were studied. The influences of heat load, liquid subcooling, and effective thermal conductivity of the wick structure were specifically selected to evaluate evaporator performance. Either increasing the applied heat flux and/or degree of inlet liquid subcooling resulted in decreased liquid core temperature, which is favorable for proper evaporator operation. This helps prevent conditions that may allow vapor formation in the liquid core as well as result in decreased length of the two-phase region in the wick structure. Decreasing the effective thermal conductivity of the wick also decreases the temperature in the liquid core. For a given liquid subcooling, a minimum heat flux exists below which vapor will generate in the liquid core and render the evaporator nonoperational. Additionally, for a given heat flux, a minimum required liquid subcooling exists as conditions are such that vapor potentially may form in the liquid core when the liquid subcooling is less than a minimum value.


2016 ◽  
Vol 7 (2) ◽  
pp. 111-129 ◽  
Author(s):  
Michele Sciacca ◽  
Luca Galantucci

Abstract In this paper we extend previous results on the effective thermal conductivity of liquid helium II in cylindrical channels to rectangular channels with high aspect ratio. The aim is to compare the results in the laminar regime, the turbulent regime and the ballistic regime, all of them obtained within a single mesoscopic formalism of heat transport, with heat flux as an independent variable.


2015 ◽  
Vol 1097 ◽  
pp. 51-55
Author(s):  
V.Yu. Polovnikov ◽  
E.V. Gubina

Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were completed. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.


Author(s):  
H. T. Aichlmayr ◽  
F. A. Kulacki

Carefully quantified effective thermal conductivity measurements of saturated porous systems are reported. Solid-fluid systems considered include glass-water, glass-air, steel-water, and steel-air. These systems yield solid-fluid conductivity ratios of 1.08, 25.7, 102, and 2400, respectively. The solid phases consist of 3.96 mm glass spheres and 14 mm steel ball bearings, which give mean porosities of 0.365 and 0.403. The experimental method is based on the transient heating of a semi-infinite cylinder by a constant heat flux at the boundary. The data reduction technique is unique because it avoids determining the effective thermal diffusivity and quantifying the boundary heat flux. In addition, particular attention is paid to assessing experimental uncertainty. Consequently, this study provides data with a degree of precision not typically found the literature. A complete accounting of energy storage and transport in the transient system is conducted to complement the uncertainty analysis. A thorough literature review is also presented to facilitate a critique of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document