Determination of Deformations as a Result of Seismic Loadings on Two-Dimensional Reinforced Concrete Frame via Terrestrial Laser Scanners

2011 ◽  
Vol 38 (2) ◽  
pp. 19-25
Author(s):  
A. Ceylan ◽  
M. Gümüş
Author(s):  
Florin Ţepeş Onea ◽  
Marian Dragomir

Abstract The theme of the paper is to design the capacity of a P + 6E construction with reinforced concrete frame structure and determination of the basic force-displacement on the top. Drawing the cutting force - the displacement at the top requires a non-linear bias of the pushover type. The non-linear static calculation is used in the displacement-based design methodology, in which lateral displacements are considered the main parameter for characterizing the seismic response of the structures.


2018 ◽  
Vol 251 ◽  
pp. 02009
Author(s):  
Nataliya Fedorova

The results of modeling and computational analysis of the static-dynamic deformation of the reinforced concrete frame-and-rod system are presented for special emergency actions caused by the sudden removal of one of the supporting elements. On the basis of energy, without the apparatus of the dynamics of structures, analytical dependences are constructed to determine the increments of the dynamic extensions in the stretched armature and the dynamic strength of the reinforcement in the sections of the frame elements under the indicated effects on the first half-wave of the structure's oscillations. Verification of the proposed analytical dependencies is performed by comparing the theoretical values of the calculated parameters with the experimental data. It is shown that the constructed analytical dependencies allow to determine quite strictly the investigated dynamic parameters of deformation of the loaded reinforced concrete framed structural systems of buildings and structures under their dynamic overloading by special emergency action associated with sudden structural reorganization of the structural system.


2019 ◽  
Vol 12 (5) ◽  
pp. 1058-1085
Author(s):  
G. M. S. ALVA ◽  
G. A. MONTANDON

Abstract The behavior of single-storey, single-bay reinforced concrete infilled frame with masonry panel subjected to static horizontal load was studied using two structural models: i) equivalent strut model (ESM) and ii) model with two-dimensional finite elements for state stress plane (MEF). In the first model, an equivalent diagonal strut replaces masonry. The axial stiffness of this element is defined by evaluation of the equivalent diagonal width. In the second model, the infilled frame is modeling by two-dimensional finite elements, requiring the simulation of the sliding and separation between the wall surfaces and the reinforced concrete frame. Although equivalent strut models are more attractive for design, the formulas found in the literature to determine equivalent strut width provide very different values. In addition, most of these formulas ignore some parameters that may be important, such as beam flexural stiffness. For this reason, several numerical analysis were be carried out. The models simulated usual geometric and mechanical characteristics observed in reinforced concrete buildings. The results of the two-dimensional finite element modeling (by software ANSYS) were used as reference for the evaluation of the results provided by the equivalent strut model. The comparison of results allowed the assessment of the analytical expressions for evaluation of the equivalent diagonal width. Based on this assessment, a new expression is proposed for buildings with similar characteristics as analyzed in this paper. The results of numerical simulations with MEF models also allowed for an evaluation of stresses and the probable cracking pattern in infill walls.


2020 ◽  
Vol 12 (24) ◽  
pp. 10360
Author(s):  
Hyun-Do Yun ◽  
Sun-Woong Kim ◽  
Wan-Shin Park ◽  
Sun-Woo Kim

The purpose of this study was to experimentally evaluate the effect of a hinged steel damping system on the shear behavior of a nonductile reinforced concrete frame with an opening. For the experimental test, a total of three full-scale reinforced concrete frame specimens were planned, based on the “no retrofitting” (NR) specimens with non-seismic details. The main research questions were whether the hinged steel damping system is reinforced and whether torsion springs are installed in the hinged steel damping system. From the results of the experiment, the hinged steel damping system (DR specimen) was found to be effective in seismic retrofitting, while isolating the opening of the reinforced concrete (RC) frame, and the torsion spring installed at the hinged connection (DSR specimen) was evaluated to be effective in controlling the amount of deformation of the upper and lower dampers. The strength, stiffness, and energy dissipation capacity of the DSR specimen were slightly improved compared to the DR specimen, and it was confirmed that stress redistribution was induced by the rotational stiffness of the torsion spring installed in the hinge connection between the upper and lower frames.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3438
Author(s):  
Michał Szczecina ◽  
Andrzej Winnicki

This paper discusses a choice of the most rational reinforcement details for frame corners subjected to opening bending moment. Frame corners formed from elements of both the same and different cross section heights are considered. The case of corners formed of elements of different cross section is not considered in Eurocode 2 and is very rarely described in handbooks. Several reinforcement details with both the same and different cross section heights are presented. The authors introduce a new reinforcement detail for the different cross section heights. The considered details are comprised of the primary reinforcement in the form of straight bars and loops and the additional reinforcement in the form of diagonal bars or stirrups or a combination of both diagonal stirrups and bars. Two methods of static analysis, strut-and-tie method (S&T) and finite element method (FEM), are used in the research. FEM calculations are performed with Abaqus software using the Concrete Damaged Plasticity model (CDP) for concrete and the classical metal plasticity model for reinforcing steel. The crucial CDP parameters, relaxation time and dilatation angle, were calibrated in numerical tests in Abaqus. The analysis of results from the S&T and FE methods allowed for the determination of the most rational reinforcement details.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2016 ◽  
Vol 711 ◽  
pp. 982-988
Author(s):  
Alex Brodsky ◽  
David Z. Yankelevsky

Numerous studies have been conducted on the in plane behavior of masonry infill walls to lateral loading simulating earthquake action on buildings. The present study is focused on a problem that has almost not been studied regarding the vertical (opposed to lateral) in-plane action on these walls. This may be of concern when a supporting column of a multi-storey reinforced concrete frame with infill masonry walls undergoes a severe damage due to an extreme loading such as a strong earthquake, car impact or military or terror action in proximity to the column. The loss of the supporting column may cause a fully or partly progressive collapse to a bare reinforced concrete frame, without infill masonry walls. The presence of the infill masonry walls may restrain the process and prevent the development of a progressive collapse. The aim of the present study is to test the in-plane composite action of Reinforced Concrete (RC) frames with infill masonry walls under vertical loading through laboratory experiments and evaluate the contributions of infill masonry walls, in an attempt to examine the infill masonry wall added resistance to the bare frame under these circumstances. Preliminary results of laboratory tests that have been conducted on reinforced concrete infilled frames without a support at their end, under monotonic vertical loading along that column axis will be presented. The observed damages and failure modes under vertical loading are clearly different from the already known failure modes observed in the case of lateral loading.


Sign in / Sign up

Export Citation Format

Share Document