EX VIVO AND IN VIVO EVALUATION OF DRUGS THAT INHIBIT PLATELET FUNCTION

1983 ◽  
Vol 416 (1 Surface Pheno) ◽  
pp. 642-650
Author(s):  
Stephen R. Hanson ◽  
Laurence A. Harker
2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


1982 ◽  
Vol 48 (01) ◽  
pp. 087-090 ◽  
Author(s):  
Carlos O Esquivel ◽  
David Bergqvist ◽  
Claes-Göran Björck ◽  
Stan N Carson ◽  
Bodil Nilsson

SummaryThe effect of sodium ibuprofen on platelet activity in vivo and the lysability of ex vivo thrombi was investigated. The formation of a hemostatic platelet plug in the rabbit mesentery and platelet embolism as a response to a laser-induced injury in the ear chamber of rabbits were used as models for determining platelet activity. Ibuprofen at a dose of 25 mg/kg i.v. was found to increase the primary (PHT) and the total hemostatic plug formation time (THT). The same dose decreased the number of cumulative emboli over a 10 min period after a laser injury to arterioles. A dose of 10 mg/kg i.v. did not affect the formation of the hemostatic platelet plug. In dogs, doses of 10, 25 und 50 mg/kg did not enhance the release of 125I-FDP from the thrombi after incubation in plasmin, but the largest dose which is approximately five times the recommended dose in humans, did significantly decrease the thrombus weight 90 and 180 min after the drug administration. In conclusion, sodium ibuprofen was shown to have an inhibitory effect on platelet function in vivo and in large doses was also found to diminish the thrombus weight.


2018 ◽  
Vol Volume 13 ◽  
pp. 1059-1079 ◽  
Author(s):  
Irhan Abu Hashim ◽  
Noha Abo El-Magd ◽  
Ahmed El-Sheakh ◽  
Mohammed Hamed ◽  
Abd El-Gawad Abd El-Gawad

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


2014 ◽  
Vol 112 (08) ◽  
pp. 412-418 ◽  
Author(s):  
Nima Vaezzadeh ◽  
Ran Ni ◽  
Paul Y. Kim ◽  
Jeffrey I. Weitz ◽  
Peter L. Gross

SummaryHaemostatic impairments are studied in vivo using one of several murine bleeding models. However it is not known whether these models are equally appropriate for assessing coagulation or platelet function defects. It was our study objective to assess the performance of arterial, venous and combined arterial and venous murine bleeding models towards impaired coagulation or platelet function. Unfractionated heparin (UFH) or αIIbβ3 inhibitory antibody (Leo.H4) were administered to mice, and their effects on bleeding in saphenous vein, artery, and tail tip transection models were quantified and correlated with their effects on plasma clotting and ADP-induced platelet aggregation, respectively. All models exhibited similar sensitivity with UFH (EC50 dose = 0.19, 0.13 and 0.07 U/g, respectively) (95% CI = 0.14 – 0.27, 0.08 – 0.20, and 0.03 – 0.16 U/g, respectively). Maximal inhibition of ex vivo plasma clotting could be achieved with UFH doses as low as 0.03 U/g. In contrast, the saphenous vein bleeding model was less sensitive to αIIbβ3 inhibition (EC50 = 6.9 µg/ml) than tail transection or saphenous artery bleeding models (EC50 = 0.12 and 0.37 µg/ml, respectively) (95% CI = 2.4 – 20, 0.05 – 0.33, and 0.06 – 2.2 µg/ml, respectively). The EC50 of Leo.H4 for ADP-induced platelet aggregation in vitro (8.0 µg/ml) was at least 20-fold higher than that of the tail and arterial, but not the venous bleeding model. In conclusion, venous, arterial and tail bleeding models are similarly affected by impaired coagulation, while platelet function defects have a greater influence in models incorporating arterial injury.


2021 ◽  
Vol 167 (3) ◽  
pp. e1.5-e1
Author(s):  
Tom Scorer ◽  
Andrew Mumford

IntroductionPlatelet dysfunction (thrombocytopathy) is a major problem in the bleeding patient and increases morbidity and healthcare costs. The thrombocytopathy resulting from cardiopulmonary bypass (CPB) can be used to study therapies targeted to improve outcomes in other scenarios, such as trauma. Platelet transfusion is used widely to correct thrombocytopathy. However, the current standard, room temperature stored platelets (RTP) have several disadvantages including; short shelf life, risk of bacterial contamination and deterioration in platelet function during storage. Cold stored platelets (CSP) are a potential alternative product with longer shelf life, reduced contamination risk and better-preserved platelet function.MethodsUsing ex vivo mixing studies, we investigated whether CSP were better able to reverse the thrombocytopathy associated with cardiac surgery than RTP. Blood samples were collected from 20 cardiac surgery patients. Donor platelets were split into two bags and stored at either 4°C (CSP), or 22°C (RTP) for up to seven days. The donor platelets were mixed with the patient blood samples to simulate platelet transfusion. The mixed samples were analysed using the TEG 5000 and using a collagen coated flow chamber at arterial shear. Patient samples were analysed alongside healthy controls (n = 20).ResultsAfter mixing the patient samples with CSP, the TEG R times were shorter than in samples mixed with RTP (p<0.0001), indicating more rapid initiation of clot formation. In the flow chamber experiments, the clot volume was greater in the patient samples mixed with CSP compared with samples mixed with RTP (p<0.0001).ConclusionsThese findings suggest that CSP, but not RTP can partially reverse the thrombocytopathy associated with cardiac surgery ex vivo, at clinically relevant mixing volumes. Reversal of thrombocytopathy by mixing CSP was greatest in the arterial shear model, which may indicate superior in vivo efficacy that requires confirmation in clinical trials.* this abstract presentation was awarded First Place.


2019 ◽  
Vol 36 (7) ◽  
pp. 603-621 ◽  
Author(s):  
Aashu Gupta ◽  
Kritika Nayak ◽  
Manju Misra
Keyword(s):  
Ex Vivo ◽  

Sign in / Sign up

Export Citation Format

Share Document