n-Docosanol: Broad Spectrum Anti-Viral Activity against Lipid-enveloped Viruses

1994 ◽  
Vol 724 (1 Slow Infectio) ◽  
pp. 472-488 ◽  
Author(s):  
DAVID H. KATZ ◽  
JOHN R. MARCELLETTI ◽  
LAURA E. POPE ◽  
MOHAMMED H. KHALIL ◽  
LEE R. KATZ ◽  
...  
2021 ◽  
Author(s):  
Jessie Pannu ◽  
Susan Ciotti ◽  
Shyamala Ganesan ◽  
George Arida ◽  
Chad Costley ◽  
...  

Abstract Objective: The Covid-19 pandemic has highlighted the importance of aerosolized droplets inhaled into the nose in the transmission of respiratory viral disease. Inactivating pathogenic viruses at the nasal port of entry may reduce viral loads, thereby reducing infection, transmission and spread. In this communication, we demonstrate safe and broad anti-viral activity of oil-in-water nanoemulsion (nanodroplet) formulation containing the potent antiseptic 0.13% Benzalkonium Chloride (NE-BZK). Results: We have demonstrated that NE-BZK exhibits broad-spectrum, long-lasting antiviral activity with >99.9% in vitro killing of enveloped viruses including SARS-CoV-2, human coronavirus, RSV, and influenza B. In vitro and ex-vivo studies demonstrated continued killing of >99.99% of human coronavirus with diluted NE-BZK and persistent for 8 hours post application, respectively. The repeated application of NE-BZK, twice daily for 2 weeks into rabbit nostrils demonstrated its safety with no nasal irritation. These findings demonstrate that formulating BZK into the proprietary nanodroplets offers a safe and effective antiviral and a significant addition to strategies to combat the spread of respiratory viral infectious diseases.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208333
Author(s):  
Valeria Cagno ◽  
Cristina Tintori ◽  
Andrea Civra ◽  
Roberta Cavalli ◽  
Marika Tiberi ◽  
...  

2014 ◽  
Vol 22 (7) ◽  
pp. 2236-2243 ◽  
Author(s):  
Wael M. Abdel-Mageed ◽  
Soad A.H. Bayoumi ◽  
Caixia Chen ◽  
Christopher J. Vavricka ◽  
Li Li ◽  
...  

2013 ◽  
Vol 58 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Christopher Barton ◽  
J. Calvin Kouokam ◽  
Amanda B. Lasnik ◽  
Oded Foreman ◽  
Alexander Cambon ◽  
...  

ABSTRACTGriffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections.


Peptides ◽  
2013 ◽  
Vol 48 ◽  
pp. 96-105 ◽  
Author(s):  
Christopher J. Sample ◽  
Kathryn E. Hudak ◽  
Brice E. Barefoot ◽  
Matthew D. Koci ◽  
Moses S. Wanyonyi ◽  
...  

Author(s):  
Shengsheng Lu ◽  
Xiaoyan Pan ◽  
Daiwei Chen ◽  
Xi Xie ◽  
Yan Wu ◽  
...  

AbstractSevere emerging and re-emerging viral infections such as Lassa fever, Avian influenza (AI), and COVID-19 caused by SARS-CoV-2 urgently call for new strategies for the development of broad-spectrum antivirals targeting conserved components in the virus life cycle. Viral lipids are essential components, and viral-cell membrane fusion is the required entry step for most unrelated enveloped viruses. In this paper, we identified a porphyrin derivative of protoporphyrin IX (PPIX) that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses including Lassa virus (LASV), Machupo virus (MACV), and SARS-CoV-2 as well as various subtypes of influenza A viral strains with IC50 values ranging from 0.91±0.25 μM to 1.88±0.34 μM. A mechanistic study using influenza A/Puerto Rico/8/34 (H1N1) as a testing strain showed that PPIX inhibits the infection in the early stage of virus entry through biophysically interacting with the hydrophobic lipids of enveloped virions, thereby inhibiting the formation of the negative curvature required for fusion and blocking the entry of enveloped viruses into host cells. In addition, the preliminary antiviral activities of PPIX were further assessed by testing mice infected with the influenza A/Puerto Rico/8/34 (H1N1) virus. The results showed that compared with the control group without drug treatment, the survival rate and mean survival time of the mice treated with PPIX were apparently prolonged. These data encourage us to conduct further investigations using PPIX as a lead compound for the rational design of lipid-targeting antivirals for the treatment of infection with enveloped viruses.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jacqueline Graff Reis ◽  
Rafael Dorighello Cadamuro ◽  
Ariadne Cristiane Cabral ◽  
Izabella Thaís da Silva ◽  
David Rodríguez-Lázaro ◽  
...  

The pharmaceutical industry is currently trying to develop new bioactive compounds to inactivate both enveloped and non-enveloped viruses for therapeutic purposes. Consequently, microalgal and macroalgal bioactive compounds are being explored by pharmaceutical, as well as biotechnology and food industries. In this review, we show how compounds produced by algae include important candidates for viral control applications. We discuss their mechanisms of action and activity against enveloped and non-enveloped viruses, including those causing infections by enteric, parenteral, and respiratory routes. Indeed, algal products have potential in human and animal medicine.


Sign in / Sign up

Export Citation Format

Share Document