scholarly journals Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models

2013 ◽  
Vol 58 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Christopher Barton ◽  
J. Calvin Kouokam ◽  
Amanda B. Lasnik ◽  
Oded Foreman ◽  
Alexander Cambon ◽  
...  

ABSTRACTGriffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections.

2020 ◽  
Vol 20 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Imre Kovesdi ◽  
Tibor Bakacs

: Viral interference, originally, referred to a state of temporary immunity, is a state whereby infection with a virus limits replication or production of a second infecting virus. However, replication of a second virus could also be dominant over the first virus. In fact, dominance can alternate between the two viruses. Expression of type I interferon genes is many times upregulated in infected epithelial cells. Since the interferon system can control most, if not all, virus infections in the absence of adaptive immunity, it was proposed that viral induction of a nonspecific localized temporary state of immunity may provide a strategy to control viral infections. Clinical observations also support such a theory, which gave credence to the development of superinfection therapy (SIT). SIT is an innovative therapeutic approach where a non-pathogenic virus is used to infect patients harboring a pathogenic virus. : For the functional cure of persistent viral infections and for the development of broad- spectrum antivirals against emerging viruses a paradigm shift was recently proposed. Instead of the virus, the therapy should be directed at the host. Such a host-directed-therapy (HDT) strategy could be the activation of endogenous innate immune response via toll-like receptors (TLRs). Superinfection therapy is such a host-directed-therapy, which has been validated in patients infected with two completely different viruses, the hepatitis B (DNA), and hepatitis C (RNA) viruses. SIT exerts post-infection interference via the constant presence of an attenuated non-pathogenic avian double- stranded (ds) RNA viral vector which boosts the endogenous innate (IFN) response. SIT could, therefore, be developed into a biological platform for a new “one drug, multiple bugs” broad-spectrum antiviral treatment approach.


2021 ◽  
Author(s):  
Jessie Pannu ◽  
Susan Ciotti ◽  
Shyamala Ganesan ◽  
George Arida ◽  
Chad Costley ◽  
...  

Abstract Objective: The Covid-19 pandemic has highlighted the importance of aerosolized droplets inhaled into the nose in the transmission of respiratory viral disease. Inactivating pathogenic viruses at the nasal port of entry may reduce viral loads, thereby reducing infection, transmission and spread. In this communication, we demonstrate safe and broad anti-viral activity of oil-in-water nanoemulsion (nanodroplet) formulation containing the potent antiseptic 0.13% Benzalkonium Chloride (NE-BZK). Results: We have demonstrated that NE-BZK exhibits broad-spectrum, long-lasting antiviral activity with >99.9% in vitro killing of enveloped viruses including SARS-CoV-2, human coronavirus, RSV, and influenza B. In vitro and ex-vivo studies demonstrated continued killing of >99.99% of human coronavirus with diluted NE-BZK and persistent for 8 hours post application, respectively. The repeated application of NE-BZK, twice daily for 2 weeks into rabbit nostrils demonstrated its safety with no nasal irritation. These findings demonstrate that formulating BZK into the proprietary nanodroplets offers a safe and effective antiviral and a significant addition to strategies to combat the spread of respiratory viral infectious diseases.


2021 ◽  
Author(s):  
Victoria Yan

GS-441524 is a nucleoside analogue with broad-spectrum antiviral activity against RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and feline coronavirus (FCoV). GS-441524 is the main circulating metabolite following intravenous administration of remdesivir (Veklury®), with a plasma half-life of approximately 24 hours. The safety, tolerability, and pharmacokinetics of GS-441524 was evaluated in a healthy human volunteer (N=1) when administered directly as an oral solution (750 mg) once daily for 7 days (Part 1) and 3 times daily for 3 days (Part 2). In Part 1 of the study, the effect of food on the absorption of GS-441524 was also evaluated. GS-441524 appeared rapidly in plasma, with an average time of maximum concentration of 0.5 hours during once-per-day dosing and exhibited an initial half-life phase of approximately 3.3 hours in the fasted state. Negligible accumulation was observed during part 1 of the multiday study. In Part 2 of the study, GS-441524 was administered 3 times daily, every 3 hours. A 2-4-fold accumulation of GS-441524 was observed approximately 3 hours after the third dose was administered, with a time of maximum concentration of 9 hours and a maximum concentration of 12.01 µM, exceeding the concentration reported to eradicate SARS-CoV-2 in vitro. For the duration of the study, GS-441524 was well-tolerated. There were no treatment-related adverse events and no clinically significant findings in clinical laboratory, vital signs, or electrocardiography. Taken together, these results demonstrate the safety and viability of orally administered GS-441524 for the treatment of COVID-19 and emerging viral infections.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Jun-Gyu Park ◽  
Ginés Ávila-Pérez ◽  
Aitor Nogales ◽  
Pilar Blanco-Lobo ◽  
Juan C. de la Torre ◽  
...  

ABSTRACT Influenza A (IAV) and influenza B (IBV) viruses are highly contagious pathogens that cause fatal respiratory disease every year, with high economic impact. In addition, IAV can cause pandemic infections with great consequences when new viruses are introduced into humans. In this study, we evaluated 10 previously described compounds with antiviral activity against mammarenaviruses for their ability to inhibit IAV infection using our recently described bireporter influenza A/Puerto Rico/8/34 (PR8) H1N1 (BIRFLU). Among the 10 tested compounds, eight (antimycin A [AmA], brequinar [BRQ], 6-azauridine, azaribine, pyrazofurin [PF], AVN-944, mycophenolate mofetil [MMF], and mycophenolic acid [MPA]), but not obatoclax or Osu-03012, showed potent anti-influenza virus activity under posttreatment conditions [median 50% effective concentration (EC50) = 3.80 nM to 1.73 μM; selective index SI for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, >28.90 to 13,157.89]. AmA, 6-azauridine, azaribine, and PF also showed potent inhibitory effect in pretreatment (EC50 = 0.14 μM to 0.55 μM; SI-MTT = 70.12 to >357.14) or cotreatment (EC50 = 34.69 nM to 7.52 μM; SI-MTT = 5.24 to > 1,441.33) settings. All of the compounds tested inhibited viral genome replication and gene transcription, and none of them affected host cellular RNA polymerase II activities. The antiviral activity of the eight identified compounds against BIRFLU was further confirmed with seasonal IAVs (A/California/04/2009 H1N1 and A/Wyoming/3/2003 H3N2) and an IBV (B/Brisbane/60/2008, Victoria lineage), demonstrating their broad-spectrum prophylactic and therapeutic activity against currently circulating influenza viruses in humans. Together, our results identified a new set of antiviral compounds for the potential treatment of influenza viral infections. IMPORTANCE Influenza viruses are highly contagious pathogens and are a major threat to human health. Vaccination remains the most effective tool to protect humans against influenza infection. However, vaccination does not always guarantee complete protection against drifted or, more noticeably, shifted influenza viruses. Although U.S. Food and Drug Administration (FDA) drugs are approved for the treatment of influenza infections, influenza viruses resistant to current FDA antivirals have been reported and continue to emerge. Therefore, there is an urgent need to find novel antivirals for the treatment of influenza viral infections in humans, a search that could be expedited by repurposing currently approved drugs. In this study, we assessed the influenza antiviral activity of 10 compounds previously shown to inhibit mammarenavirus infection. Among them, eight drugs showed antiviral activities, providing a new battery of drugs that could be used for the treatment of influenza infections.


2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
P. J. Klasse

Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization—mechanism, stoichiometry, kinetics, and efficacy—from surprising new angles.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Cheng Man Lun ◽  
Abdul A. Waheed ◽  
Ahlam Majadly ◽  
Nicole Powell ◽  
Eric O. Freed

ABSTRACT An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins. IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


1996 ◽  
Vol 7 (3) ◽  
pp. 142-152 ◽  
Author(s):  
D. Reymen ◽  
M. Witvrouw ◽  
J. A. Esté ◽  
J. Neyts ◽  
D. Schols ◽  
...  

Various new aurintricarboxylic acid (ATA) polymer analogues have been evaluated for their antiviral activity against a wide array of DNA and RNA viruses, and their mechanism of action against human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1). Most of the polymers exhibited marked antiviral activity against a variety of enveloped viruses, but not against non-enveloped viruses. The ATA polymers displayed the most pronounced activity against HIV-1, HCMV and human herpesvirus type 6 (HHV-6). Their action against HCMV and HIV could be ascribed to inhibition of the initial attachment of virus particles to the cells. Using radiolabelled virus, we proved that the polymers inhibit the binding of HCMV to HEL fibroblasts. By flow cytometric analysis, we demonstrated that these new polymers interfere with (i) the binding of OKT4A monoclonal antibody (mAb) to the cellular CD4 receptor, (ii) the binding of anti-gp120 mAb to HIV-1 glycoprotein (gp) 120, and (iii) the adsorption of HIV-1 virions and recombinant HIV-1gp120 (rgp120) to MT-4 cells. The presence of a salicylic acid substituent on the central bridging carbon in the parent compound ATA seems to play an important role in the anti-HIV activity of these ATA related polymer analogues.


2015 ◽  
Vol 70 (6) ◽  
pp. 1674-1685 ◽  
Author(s):  
Stephanie C. Gordts ◽  
Marleen Renders ◽  
Geoffrey Férir ◽  
Dana Huskens ◽  
Els J. M. Van Damme ◽  
...  

Abstract Objectives This study aimed to assess the antiviral properties of a unique lectin (NICTABA) produced by the tobacco plant, Nicotiana tabacum. Methods Cellular assays were used to investigate the antiviral activity of NICTABA and Urtica dioica agglutinin (UDA). Surface plasmon resonance (SPR) studies were performed to study the sugar specificity and the interactions of both lectins with the envelope glycoproteins of HIV-1. Results The N-acetyl-d-glucosamine (GlcNAc)-binding lectins exhibited broad-spectrum activity against several families of enveloped viruses including influenza A/B, Dengue virus type 2, herpes simplex virus types 1 and 2 and HIV-1/2. The IC50 of NICTABA for various HIV-1 strains, clinical isolates and HIV-2 assessed in PBMCs ranged from 5 to 30 nM. Furthermore, NICTABA inhibited syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T lymphocytes and prevented DC-SIGN-mediated HIV-1 transmission to CD4+ target T lymphocytes. However, unlike many other antiviral carbohydrate-binding agents (CBAs) described so far, NICTABA did not block HIV-1 capture to DC-SIGN+ cells and it did not interfere with the binding of the human monoclonal antibody 2G12 to gp120. SPR studies with HIV-1 envelope glycoproteins showed that the affinity of NICTABA for gp120 and gp41 was in the low nanomolar range. The specific binding of NICTABA to gp120 could be prevented in the presence of a GlcNAc trimer, but not in the presence of mannose trimers. NICTABA displayed no antiviral activity against non-enveloped viruses. Conclusions Since CBAs possess a high genetic barrier for the development of viral resistance and NICTABA shows a broad antiviral activity profile, this CBA may qualify as a potential antiviral candidate with a pleiotropic mode of action aimed at targeting the entry of enveloped viruses.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 52
Author(s):  
Patricia Resa-Infante ◽  
Itziar Erkizia ◽  
Jon Ander Nieto-Garai ◽  
Maier Lorizate ◽  
Nuria Izquierdo-Useros ◽  
...  

Viral infections in humans cause a huge burden in worldwide healthcare that has increased due to the emergence of new pathogenic viruses, such as in the recent Ebola virus (EBOV) outbreaks. Viral particles in body fluids are often at very low levels, making diagnosis difficult. In order to address this problem, we have developed a new detection platform to isolate and detect different enveloped viruses. We have recently identified that sialic acid-binding Ig‑like lectin 1 (Siglec-1/CD169) is one cellular receptor used by EBOV and HIV-1 to enter myeloid cells, key target cells for infection and pathogenesis. For viral uptake, the V-set domain of this myeloid cell receptor recognizes the gangliosides of viral membranes that were dragged during viral budding from the plasma membrane of infected cells. We took advantage of this specific interaction between Siglec‑1 and viral gangliosides to develop a new detection methodology. We have generated a recombinant protein that contains the V-set domain of Siglec-1 fused to the human IgG Fc domain for anchoring in latex beads. These coated beads allow the isolation of viral particles and their measurement by flow cytometry. We have tested its efficacy to detect HIV-1 and EBOV and its specificity by using anti-Siglec‑1 antibodies that prevent the interaction and serve as a negative control. To test the capacity of our method, we used synthetic liposomes to assess the effect of ganglioside concentration in membranes as well as the size of viral particles. This methodology would facilitate the diagnosis of infections by concentrating viral particles in a fast and direct method. At a time when global human mobility facilitates the dissemination of infectious agents, our approach represents a rapid and effective method to maximize the identification of both known and emerging enveloped viruses as part of public health viral surveillance strategies.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 90
Author(s):  
Xabier Muniz-Trabudua ◽  
Cristina Borio ◽  
Marcos Bilen ◽  
Itziar Erkizia ◽  
Daniel Perez-Zsolt ◽  
...  

Arenaviruses are enveloped viruses that cause hemorrhagic fever outbreaks in humans and still lack an effective antiviral treatment. Upon early infection, these viruses target dendritic cells (DCs), which can promote systemic viral dissemination, contributing to pathogenesis. We have previously described that Siglec-1, a sialic acid Ig-like binding lectin-1 expressed on DCs interacts with different enveloped viruses and promotes their capture within a virus-containing compartment. Such is the case of HIV-1 or Ebola virus, which display sialylated gangliosides on their viral envelope that are effectively recognized by Siglec-1. Here, we aimed to study if Siglec-1 on DCs also interacts with arenaviruses such as Junin. We produced non-infectious Junin viral-like particles (Junin-VLPs) tagged with fluorescent Egfp by transfecting a plasmid encoding the structural Junin Z protein on HEK-293T cells. Junin-VLPs were added to a Raji cell line stably transfected with Siglec-1 or to monocyte-derived DCs activated or not with either Interferon-α or lipopolysaccharide. Viral uptake was analyzed by FACS or confocal microscopy in the presence of an anti-Siglec-1 monoclonal antibody (mAb) or an isotype control. Statistical differences were assessed with the indicated tests. Raji Siglec-1 cells captured a higher number of Junin-VLPs than Raji cells, and this was blocked with an anti-Siglec-1 mAb (P = 0.0159; Mann–Whitney). On primary DCs, activation enhanced Junin-VLP capture (P = 0.0024; paired t-test) and Siglec-1 expression. Furthermore, pre-incubation with an anti-Siglec-1 mAb on activated DCs blocked Junin-VLP uptake (P ≤ 0.0002; one sample t-test), while an isotype control did not. Forty-nine percent of the activated DCs analyzed by confocal microscopy captured Junin-VLPs within a Siglec-1+ virus-containing compartment. Moreover, when HIV-1 was also added, 97% of those compartments retained both viruses. Thus, we conclude that Siglec-1 is a new receptor involved in arenavirus uptake in DCs and could represent a novel target for an anti-arenavirus treatment.


Sign in / Sign up

Export Citation Format

Share Document