scholarly journals Cosmological Parameters and Gravitational Lensing Statistics

1995 ◽  
Vol 759 (1) ◽  
pp. 600-603
Author(s):  
PHILLIP HELBIG
2005 ◽  
Vol 201 ◽  
pp. 245-254
Author(s):  
Phillip. Helbig

I review simultaneous constraints on the cosmological parameters Δ0 and Ω0 from gravitational lensing. The emphasis is on systematic extragalactic surveys for strong gravitational lenses, mainly the largest and best-defined such survey, JVAS/CLASS.


2019 ◽  
Vol 488 (3) ◽  
pp. 3745-3758 ◽  
Author(s):  
Yun Chen ◽  
Ran Li ◽  
Yiping Shu ◽  
Xiaoyue Cao

ABSTRACT By comparing the dynamical and lensing masses of early-type lens galaxies, one can constrain both the cosmological parameters and the density profiles of galaxies. We explore the constraining power on cosmological parameters and the effect of the lens mass model in this method with 161 galaxy-scale strong lensing systems, which is currently the largest sample with both high-resolution imaging and stellar dynamical data. We assume a power-law mass model for the lenses, and consider three different parametrizations for γ (i.e. the slope of the total mass density profile) to include the effect of the dependence of γ on redshift and surface mass density. When treating δ (i.e. the slope of the luminosity density profile) as a universal parameter for all lens galaxies, we find the limits on the cosmological parameter Ωm are quite weak and biased, and also heavily dependent on the lens mass model in the scenarios of parametrizing γ with three different forms. When treating δ as an observable for each lens, the unbiased estimate of Ωm can be obtained only in the scenario of including the dependence of γ on both the redshift and the surface mass density, that is $\Omega _\mathrm{ m} = 0.381^{+0.185}_{-0.154}$ at 68 per cent confidence level in the framework of a flat ΛCDM model. We conclude that the significant dependencies of γ on both the redshift and the surface mass density, as well as the intrinsic scatter of δ among the lenses, need to be properly taken into account in this method.


2020 ◽  
Vol 492 (4) ◽  
pp. 4780-4804 ◽  
Author(s):  
Ken Osato ◽  
Masato Shirasaki ◽  
Hironao Miyatake ◽  
Daisuke Nagai ◽  
Naoki Yoshida ◽  
...  

ABSTRACT Cross-correlation analysis of the thermal Sunyaev–Zel’dovich (tSZ) effect and weak gravitational lensing (WL) provides a powerful probe of cosmology and astrophysics of the intracluster medium. We present the measurement of the cross-correlation of tSZ and WL from Planck and Subaru Hyper-Suprime Cam. The combination enables us to study cluster astrophysics at high redshift. We use the tSZ-WL cross-correlation and the tSZ autopower spectrum measurements to place a tight constraint on the hydrostatic mass bias, which is a measure of the degree of non-thermal pressure support in galaxy clusters. With the prior on cosmological parameters derived from the analysis of the cosmic microwave background anisotropies by Planck and taking into account foreground contributions both in the tSZ autopower spectrum and the tSZ-WL cross-correlation, the hydrostatic mass bias is estimated to be $26.9^{+8.9}_{-4.4} {{\ \rm per\ cent}}$ ($68{{\ \rm per\ cent}}$ CL), which is consistent with recent measurements by mass calibration techniques.


1999 ◽  
Vol 08 (04) ◽  
pp. 507-517 ◽  
Author(s):  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

Identification of gravitationally lensed Gamma Ray Bursts (GRBs) in the BATSE 4B catalog can be used to constrain the average redshift <z> of the GRBs. In this paper we investigate the effect of evolving lenses on the <z> of GRBs in different cosmological models of the universe. The cosmological parameters Ω and Λ have an effect on the <z> of GRBs. The other factor which can change the <z> is the evolution of galaxies. We consider three evolutionary model of galaxies. In particular, we find that the upper limit on <z> of GRBs is higher in evolving model of galaxies as compared to non-evolving models of galaxies.


2003 ◽  
Vol 12 (01) ◽  
pp. 101-119 ◽  
Author(s):  
ABHA DEV ◽  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

In this paper, observational constraints on the cosmic equation of state of dark energy (p = wρ) have been investigated using gravitational lensing statistics. A likelihood analysis of the lens survey has been carried out to constrain the cosmological parameters Ωmand w. Constraints on Ωmand w are obtained in three different models of galaxy evolution: no evolution model (comoving number density of galaxies remain constant), Volmerange and Guiderdoni Model and fast merging model. The last two models consider the number evolution of galaxies in addition to the luminosity evolution. The likelihood analysis shows that for the no-evolution case w ≤ -0.04 and Ωm≤ 0.90 at 1σ (68% confidence level (CL)). Similarly for the Volmerange & Guiderdoni Model the constraints are w ≤ -0.04 and Ωm≤ 0.91 at 1σ. In fast merging model the constraint become weaker and it allows almost the entire range of parameters. For the case of constant Λ (w = -1), all the models permit Ωm= 0.3 with 68% CL, which is consistent with the value of Ωminferred from various other cosmological observations.


2021 ◽  
Vol 4 ◽  
Author(s):  
Nathanaël Perraudin ◽  
Sandro Marcon ◽  
Aurelien Lucchi ◽  
Tomasz Kacprzak

Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the Universe and our ability to constrain cosmological models. The prediction of these mass maps is based on expensive N-body simulations, which can create a computational bottleneck for cosmological analyses. Simulation-based emulators of map summary statistics, such as the matter power spectrum and its covariance, are starting to play increasingly important role, as the analytical predictions are expected to reach their precision limits for upcoming experiments. Creating an emulator of the cosmological mass maps themselves, rather than their summary statistics, is a more challenging task. Modern deep generative models, such as Generative Adversarial Networks (GAN), have demonstrated their potential to achieve this goal. Most existing GAN approaches produce simulations for a fixed value of the cosmological parameters, which limits their practical applicability. We propose a novel conditional GAN model that is able to generate mass maps for any pair of matter density Ωm and matter clustering strength σ8, parameters which have the largest impact on the evolution of structures in the Universe, for a given source galaxy redshift distribution n(z). Our results show that our conditional GAN can interpolate efficiently within the space of simulated cosmologies, and generate maps anywhere inside this space with good visual quality high statistical accuracy. We perform an extensive quantitative comparison of the N-body and GAN -generated maps using a range of metrics: the pixel histograms, peak counts, power spectra, bispectra, Minkowski functionals, correlation matrices of the power spectra, the Multi-Scale Structural Similarity Index (MS-SSIM) and our equivalent of the Fréchet Inception Distance. We find a very good agreement on these metrics, with typical differences are &lt;5% at the center of the simulation grid, and slightly worse for cosmologies at the grid edges. The agreement for the bispectrum is slightly worse, on the &lt;20% level. This contribution is a step toward building emulators of mass maps directly, capturing both the cosmological signal and its variability. We make the code1 and the data2 publicly available.


2020 ◽  
Vol 639 ◽  
pp. A128
Author(s):  
L. Bonavera ◽  
J. González-Nuevo ◽  
M. M. Cueli ◽  
T. Ronconi ◽  
M. Migliaccio ◽  
...  

Context. As recently demonstrated, high-z submillimetre galaxies (SMGs) are the perfect background sample for tracing the mass density profiles of galaxies and clusters (baryonic and dark matter) and their time-evolution through gravitational lensing. Their magnification bias, a weak gravitational lensing effect, is a powerful tool for constraining the free parameters of a halo occupation distribution (HOD) model and potentially also some of the main cosmological parameters. Aims. The aim of this work is to test the capability of the magnification bias produced on high-z SMGs as a cosmological probe. We exploit cross-correlation data to constrain not only astrophysical parameters (Mmin, M1, and α), but also some of the cosmological ones (Ωm, σ8, and H0) for this proof of concept. Methods. The measured cross-correlation function between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2 < z < 0.8 and a background sample of H-ATLAS galaxies with photometric redshifts > 1.2 is modelled using the traditional halo model description that depends on HOD and cosmological parameters. These parameters are then estimated by performing a Markov chain Monte Carlo analysis using different sets of priors to test the robustness of the results and to study the performance of this novel observable with the current set of data. Results. With our current results, Ωm and H0 cannot be well constrained. However, we can set a lower limit of > 0.24 at 95% confidence level (CL) on Ωm and we see a slight trend towards H0 >  70 values. For our constraints on σ8 we obtain only a tentative peak around 0.75, but an interesting upper limit of σ8 ≲ 1 at 95% CL. We also study the possibility to derive better constraints by imposing more restrictive priors on the astrophysical parameters.


2005 ◽  
Vol 216 ◽  
pp. 95-104
Author(s):  
Scott Croom ◽  
Brian Boyle ◽  
Tom Shanks ◽  
Phil Outram ◽  
Adam Myers ◽  
...  

The 2dF QSO Redshift Survey (2QZ) is now complete and available to the astronomical community (see www.2dfquasar.org). In this paper we review some of the principle science results to come from the survey, in particular concentrating on tests for cosmological parameters. Measurements of large-scale structure using the correlation function and power spectrum, together with determinations of the geometric distortion of clustering in redshift-space have been used. These produce a consistent picture which is well matched to the now standard cosmological model with Ωm ≃ 0.3 and ΩΛ ≃ 0.7. In particular, geometric distortions provide evidence for non-zero ΩΛ independent of type Ia supernovae, the CMB, or the assumed type of dark matter (e.g. CDM). However, gravitational lensing results in the form of potential arcminute separation lensed pairs and a stronger than expected anti-correlation between QSOs and foreground galaxies in groups and clusters may prove to be inconsistent with the current standard model. These issues certainly require further investigation.


2019 ◽  
Vol 490 (2) ◽  
pp. 2606-2626 ◽  
Author(s):  
Hao-Yi Wu ◽  
David H Weinberg ◽  
Andrés N Salcedo ◽  
Benjamin D Wibking ◽  
Ying Zu

ABSTRACT Next-generation optical imaging surveys will revolutionize the observations of weak gravitational lensing by galaxy clusters and provide stringent constraints on growth of structure and cosmic acceleration. In these experiments, accurate modelling of covariance matrices of cluster weak lensing plays the key role in obtaining robust measurements of the mean mass of clusters and cosmological parameters. We use a combination of analytical calculations and high-resolution N-body simulations to derive accurate covariance matrices that span from the virial regime to linear scales of the cluster-matter cross-correlation. We validate this calculation using a public ray-tracing lensing simulation and provide a software package for calculating covariance matrices for a wide range of cluster and source sample choices. We discuss the relative importance of shape noise and density fluctuations, the impact of radial bin size, and the impact of off-diagonal elements. For a weak lensing source density ns = 10 arcmin−2, shape noise typically dominates the variance on comoving scales $r_{\rm p}\lesssim 5\ h^{-1} \, \rm Mpc$. However, for ns = 60 arcmin−2, potentially achievable with future weak lensing experiments, density fluctuations typically dominate the variance at $r_{\rm p}\gtrsim 1\ h^{-1} \, \rm Mpc$ and remain comparable to shape noise on smaller scales.


Sign in / Sign up

Export Citation Format

Share Document