Tail Muscle Free Amino Acid Concentration of Pacific White Shrimp,Litopenaeus vannamei, Fed Diets Containing Protein-bound versus Crystalline Amino Acids

2009 ◽  
Vol 40 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Joe M. Fox ◽  
Addison L. Lawrence ◽  
Eunice Li-Chan
1976 ◽  
Vol 36 (2) ◽  
pp. 219-230
Author(s):  
P. G. Lunn ◽  
R. G. Whitehead ◽  
B. A. Baker

1. Free amino acid concentrations in the plasma have been compared with those in liver and quadriceps muscle, in rats fed on diets containing 209 (control) and 31 (low-protein) g protein/kg. The effects of the low-protein diet on diurnal variations in these values were also measured.2. In the plasma, the total amino acid concentration was significantly lower in animals given the low-protein diet, at all times of day except 12.00 hours. In the liver, and to a lesser extent the muscle, total amino acid concentration was maintained.3. In the control animals, diurnal variation in the concentrations of both essential and non-essential amino acids was very similar in plasma, liver and muscle. In animals given the low-protein diet, although the same diurnal pattern was maintained for non-essential amino acids, that occurring among the essential amino acids had virtually disappeared.4. In plasma, the mean 24 h concentration of essential amino acids decreased from 24· mmol/l in control animals to only 1·29 mmol/l in the low-protein-fed animals. Concentrations in muscle and liver were reduced by a similar proportion (from 8·6 to 5·56 μmol/g and from 8·67 to 5·05 μmol/g respectively). Conversely the concentrations of non-essential amino acids in animals given the low-protein diet were increased in plasma (from 1·53 to 2·00 mmol/l), muscle (from 12·5 to 14·3 μmol/g), and liver (from 16·8 to 20·5 μmol/g), muscle showing the lowest increase.5. With the exceptions of lysine, threonine, cystine and tyrosine, the concentrations of all other essential amino acids were reduced more in liver than in muscle. The relationship between this and the failure to maintain plasma albumin concentrations is discussed.


2021 ◽  
Vol 33 (12) ◽  
pp. 2989-2992
Author(s):  
Borche Makarijoski ◽  
Gordana Dimitrovska ◽  
Vesna K. Hristova ◽  
Elena Joshevska ◽  
Mahmoud A. Abdelaziz Mahmoud ◽  
...  

The present work is focussed to determine the Macedonian white brined cheese’s free amino acid profile. Four variants of the Macedonian white brined cheese to analyze and determine free amino acid concentration; cheese samples define the Macedonian white brined cheese as a typical cheese. All free amino acids were specified, except the amino acid tyrosine. The detected amino acids in the tested cheese variants were present in different but approximate parameter values. The estimated essential free amino acids, the concentration of lysine was found highest in all examined samples with values from 26.40 ± 0.02 mg% to 28.20 ± 0.04 mg% and the concentration of threonine was the lowest from 3.19 ± 0.02 mg% to 3.32 ± 0.02 mg%). In the detected unessential free amino acids, the concentration of aspartic amino acid was highest in all the samples with values from 11.02 ± 0.05 mg% to 11.32 ± 0.03 mg% and the concentration of proline was at the lowest level from 4.16 ± 0.06 mg% to 4.22 ± 0.04 mg%.


1976 ◽  
Vol 36 (2) ◽  
pp. 189-198 ◽  
Author(s):  
E. R. Chavez ◽  
H. S. Bayley

1. The influence of a 24 h fast on the concentrations of free amino acids in the plasma, and upon the oxidation rates of methionine, isoleucine and threonine was studied (using early weaned, 4-week-old piglets which were receiving a semi-purified diet.2. There was no change in the total concentration of the essential amino acids as a result of the 24 h fast: the concentration of the branched-chain amino acids increased, but the effect of this was offset by decreases in the concentrations of arginine, histidine, lysine, methionine and phenylalanine. There was a reduction in the concentration of the non-essential amino acids.3. The piglets received infusions of L-[1-14C]methionine, L-[U-14C]isoleucine and L-[U-14C]threonine, and the recovery of the label in carbon dioxide was determined. Less than 5% of the activity from methionine was recovered in the CO2 from the fed piglets, whereas 12% was recovered from the fasted piglets. The corresponding values with threonine were 11 and 19% but there was no effect of fasting on the recovery of the label from isoleucine in CO2.4. The initial dilution of a single dose of a labelled amino acid infused into the bloodstream depends on the plasma concentration of the amino acid. Nutritional regimens may effect the free amino acid concentration in the plasma. Thus comparisons based upon direct determination of activity recovered in CO2 from the labelled dose of an amino acid with animals on different nutritional regimens could be misleading, unless the differences in the concentrations of the amino acid in the plasma are considered.


2013 ◽  
Vol 57 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Adam Brodzki ◽  
Piotr Brodzki ◽  
Maria Szpetnar ◽  
Marcin R. Tatara

Abstract The aim of the study was to determine serum free amino acid concentration in male dogs suffering from benign and malignant perianal tumours. Serum concentrations of cysteic acid, glutamic acid, glutamine, aspartic acid, glycine, γ-aminobutyric acid, tryptophan, methionine, arginine, taurine, threonine, tyrosine, alanine, valine, isoleucine, and leucine were significantly changed in dogs suffering from benign and/or malignant tumours when compared to the control group (P<0.05). Serum concentration of serine, phenylalanine, lysine and histidine was not influenced in dogs with neoplastic disease (P>0.05). The evaluation of serum free amino acid concentration, has shown that threonine, glutamic acid, alanine, valine, isoleucine, leucine, γ-aminobutyric acid, and glycine have the highest diagnostic and prognostic value in dogs suffering from benign and malignant perianal tumours. Highly diagnostic and prognostic value in relation to benign tumour growth was also found while evaluating branched chain and acidic groups of amino acids. Serine, phenylalanine, lysine, and histidine, as well as alkaline amino acids were proved not to have diagnostic and prognostic value in dogs with the tumours. Thus, the evaluation of free amino acid concentration may serve diagnostic purposes and help in tumour malignancy differentiation. The elaborated experimental model may be used in further studies on neoplastic disease development and monitoring of applied treatment efficiency.


2020 ◽  
Vol 22 (9) ◽  
pp. 657-662 ◽  
Author(s):  
Mustafa Celik ◽  
Alper Şen ◽  
İsmail Koyuncu ◽  
Ataman Gönel

Aim and Objective:: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. Materials and Methods:: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.


2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Fan ◽  
Jing Hong ◽  
Jun-Duo Hu ◽  
Jin-Lian Chen

Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer.Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n=15), early gastric cancer inpatients in group B (n=7), and advanced gastric cancer inpatients in group C (n=16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n=5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves.Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P<0.05), but the levels of histidine and methionine decreased (P<0.05), and aspartate decreased significantly (P<0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P<0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by 3 advanced gastric cancer inpatients of group D showed that all could coincide with the model.Conclusions. The noticeable differences of urine-free amino acid profiles between gastric cancer patients and healthy adults indicate that such amino acids as valine, isoleucine, leucine, methionine, histidine and aspartate are important metabolites in cell multiplication and gene expression during tumor growth and metastatic process. The study suggests that urine-free amino acid profiling is of potential value for screening or diagnosing gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document