Interaction of T Lymphocytes with Cerebral Endothelial Cells in vitro

1991 ◽  
Vol 1 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Hartmut Wekerle ◽  
Britta Engelhardt ◽  
Werner Risau ◽  
Richard Meyermann
1990 ◽  
Vol 110 (5) ◽  
pp. 1757-1766 ◽  
Author(s):  
W Risau ◽  
B Engelhardt ◽  
H Wekerle

The endothelial blood-brain barrier (BBB) has a critical role in controlling lymphocyte traffic into the central nervous system (CNS), both in physiological immunosurveillance, and in its pathological aberrations. The intercellular signals that possibly could induce lymphocytes to cross the BBB include immunogenic presentation of protein (auto-)antigens by BBB endothelia to circulating T lymphocytes. This concept has raised much, though controversial, attention. We approached this problem by analyzing in vitro immunospecific interactions between clonal rat T lymphocyte lines with syngeneic, stringently purified endothelial monolayer cultures from adult brain micro-vessels. The rat brain endothelia (RBE) were established from rat brain capillaries using double collagenase digestion, density gradient fractionation and selective cytolysis of contaminating pericytes by anti-Thy 1.1 antibodies and complement. Incubation with interferon-gamma in most of the brain-derived endothelial cells induced Ia-antigens in the cytoplasm and on the cell surface in some of the cells. Before the treatment, the cells were completely Ia-negative. Pericytes were unresponsive to IFN-gamma treatment. When confronted with syngeneic T cell lines specific for protein (auto-)antigens (e.g., ovalbumin and myelin basic protein, MBP), RBE were completely unable to induce antigen-specific proliferation of syngeneic T lymphocytes irrespective of pretreatment with IFN-gamma and of cell density. RBE were inert towards the T cells, and did not suppress T cell activation induced by other "professional" antigen presenting cells (APC) such as thymus-derived dendritic cells or macrophages. IFN-gamma-treated RBE were, however, susceptible to immunospecific T cell killing. They were lysed by MBP-specific T cells in the presence of the specific antigen or Con A. Antigen dependent lysis was restricted by the appropriate (MHC) class II product. We conclude that the interaction of brain endothelial cells with encephalitogenic T lymphocytes may involve recognition of antigen in the molecular context of relevant MHC products, but that this interaction per se is insufficient to initiate the full T cell activation program.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2350-2350
Author(s):  
Antonella Zucchetto ◽  
Dania Benedetti ◽  
Claudio Tripodo ◽  
Riccardo Bomben ◽  
Fleur Bossi ◽  
...  

Abstract Abstract 2350 Poster Board II-327 Introduction: CD38 and CD49d are associated negative prognosticators in chronic lymphocytic leukemia (CLL). Recent gene expression profiling studies comparing CLL cases expressing low versus high levels of CD38 and CD49d, identified CCL3 as a gene upregulated by CD38+CD49d+ CLL. The release of CCL3 by cultured CLL cells was also demonstrated upon CD38 triggering, and CCL3 protein was found in CLL cells from bone marrow biopsies (BMB) of CD38+ cases (Zucchetto et al., Cancer Res, 2009; 69:4001-9). Given the role of CCL3 as potent chemoattractant for different cell types, we aimed at identifying the major targets of CCL3, as produced by CD38+CD49d+ CLL cells. Methods: CLL infiltrates of BMB were characterized by immunohistochemistry (IHC). Expression of the CCL3 receptors CCR1 and CCR5 by PB CLL subpopulations was evaluated by flow cytometry. T lymphocyte and monocyte migrations were performed by in-vitro transwell chemotaxis assays. Results: IHC analysis of BMB from 16 CLL cases revealed a higher number of infiltrating CD68+ cells in the context of CLL-involved areas of BMB from CD38+CD49d+CCL3+, compared to CD38−CD49d−CCL3− cases (p=0.01). CD3+ lymphocytes were interspersed in the CLL aggregates, but with no significant difference between the two subgroups. Evaluation of CCR1 and CCR5 in PB cell subpopulations from 40 CLL cases expressing or not surface CD38 and CD49d, showed the highest mean fluorescence intensity (MFI) levels for both CCR1 (624±60) and CCR5 (64±9) in the monocytic component, irrespective of CD38 and CD49d expression by CLL cells. Conversely, both CLL cells and residual T lymphocytes showed low MFI levels for CCR1 (19±4 and 14±3) and CCR5 (21±2 and 20±2). High CCR1 and CCR5 expression levels were detected in in-vitro differentiated monocytes from purified PB cells of four CD38+CD49d+ CLL. Accordingly, CCR1 expression was documented in macrophage-like cells in BMB from CD38+CD49d+ CLL. Next, we evaluated the capability of purified monocytes and T lymphocytes from 10 CLL cases to migrate in response to CCL3. In keeping with the strong expression of CCR1, monocytes migrated toward CCL3 at a concentration of 3 ng/mL (migration index, MI= 8.8±0.9, p=0.03), whereas T lymphocytes required a higher CCL3 concentration (100 ng/mL) to display slight migration capability (MI= 1.6±0.2, p=ns). The increased infiltration of macrophages in BMB from CCL3-producing CD38+CD49d+ CLL, prompted us to verify the capability of CCL3-stimulated macrophages to induce the expression by endothelial cells (EC) of the CD49d specific ligand VCAM-1. By using two different EC models (HUVEC and ADMEC), we documented a significant up-regulation of VCAM-1 by EC exposed to conditioned media (CM) collected from cultures of macrophages challenged in-vitro with CCL3 (p=0.002). Notably, increased levels of the pro-inflammatory cytokine TNF-α were detected in CCL3-CM (p=0.006), and neutralization of TNF-α by specific antibodies reverted the capability of CCL3-CM to induce VCAM-1 by EC models. In agreement with these in-vitro data, we found a more prominent meshwork of VCAM-1+ stromal/endothelial cells in lymphoid infiltrates from CD38+CD49d+ CLL compared to CD38−CD49d− cases (p=0.002), and engagement of CD49d by VCAM-1 was able to significantly delay the spontaneous apoptosis observed in cultured CLL cells. Conclusions: CD68+ monocytes/macrophages are likely the main targets for the CLL3 chemokine produced by CD38+CD49d+ CLL cells, and are active in determining, through the release of TNF-α and other yet unidentified cytokines, the overexpression of VCAM-1 by endothelial cells. Experiments aimed at investigating further roles of CD68+ monocytes/macrophage in CLL are currently matter of study. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 130 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Lei Chen ◽  
Bela Kis ◽  
David W. Busija ◽  
Hiroshi Yamashita ◽  
Yoichi Ueta

2020 ◽  
Vol 8 (1) ◽  
pp. e000432 ◽  
Author(s):  
Lorena Carmona-Rodríguez ◽  
Diego Martínez-Rey ◽  
Maria Jesús Fernández-Aceñero ◽  
Alicia González-Martín ◽  
Mateo Paz-Cabezas ◽  
...  

BackgroundTumor-infiltrating lymphocytes (TILs), mainly CD8+ cytotoxic T lymphocytes (CTL), are linked to immune-mediated control of human cancers and response to immunotherapy. Tumors have nonetheless developed specific mechanisms that selectively restrict T cell entry into the tumor microenvironment. The extracellular superoxide dismutase (SOD3) is an anti-oxidant enzyme usually downregulated in tumors. We hypothesize that upregulation of SOD3 in the tumor microenvironment might be a mechanism to boost T cell infiltration by normalizing the tumor-associated endothelium.ResultsHere we show that SOD3 overexpression in endothelial cells increased in vitro transmigration of naïve and activated CD4+ and CD8+ T cells, but not of myeloid cells. Perivascular expression of SOD3 also specifically increased CD4+ and CD8+ effector T cell infiltration into tumors and improved the effectiveness of adoptively transferred tumor-specific CD8+ T cells. SOD3-induced enhanced transmigration in vitro and tumor infiltration in vivo were not associated to upregulation of T cell chemokines such as CXCL9 or CXCL10, nor to changes in the levels of endothelial adhesion receptors such as intercellular adhesion molecule-1 (ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1). Instead, SOD3 enhanced T cell infiltration via HIF-2α-dependent induction of specific WNT ligands in endothelial cells; this led to WNT signaling pathway activation in the endothelium, FOXM1 stabilization, and transcriptional induction of laminin-α4 (LAMA4), an endothelial basement membrane component permissive for T cell infiltration. In patients with stage II colorectal cancer, SOD3 was associated with increased CD8+ TIL density and disease-free survival. SOD3 expression was also linked to a T cell–inflamed gene signature using the COAD cohort from The Cancer Genome Atlas program.ConclusionOur findings suggest that SOD3-induced upregulation of LAMA4 in endothelial cells boosts selective tumor infiltration by T lymphocytes, thus transforming immunologically “cold” into “hot” tumors. High SOD3 levels are associated with human colon cancer infiltration by CD8+ T cells, with potential consequences for the clinical outcome of these patients. Our results also uncover a cell type–specific, distinct activity of the WNT pathway for the regulation of T cell infiltration into tumors.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Li Zhang ◽  
Michael Chopp ◽  
Chao Li ◽  
Quan Jiang ◽  
Guang Liang Ding ◽  
...  

Introduction: Diabetes mellitus (DM) is associated with cognitive decline and dementia in the elderly. The glymphatic system mediates clearance of the interstitial solutes in the brain by exchange of cerebrospinal and interstitial fluid (CSF and ISF). We recently demonstrated that DM in aged rat induces impairment of the glymphatic system and cognitive decline. Exosomes, membrane vesicles, mediate intercellular communication by transferring their cargo into recipient cells. The present study investigated whether cerebral endothelial exosomes (CEE) ameliorate glymphatic system impairment and improve cognitive function in aged DM rats. Methods and Results: DM was induced in male Wistar rats (13 months, n=48) by injection of nicotinamide and streptozotocin. Two months after DM, rats were treated with CEE (1x10 11 exosomes/rat, IV) twice a week for 4 weeks. Age matched DM and non-DM rats were used as controls. CEE were harvested from the cultured cerebral endothelial cells of health young adult rats. Exchanges of CSF and ISF were measured by intracisternal injection of fluorescent tracer, Texas Red-dextran (TR, 3kD). Confocal microscopic analysis of brain slices revealed a progressive slowdown of ISF clearance in the hippocampi, assessed by retention of TR starting at 2.5 fold at 2M (13±5 vs 5±3% of area) and increasing to 4 fold at 4M (21±4 vs 5±2%) of DM. Paravascular amyloid β (Aβ) accumulation was only detected at 4M of DM. The CEE treatment significantly (p<0.05) reduced TR retention (10±4%) at 4M of DM and also decreased Aβ accumulation (2±1 vs 6±2/mm 2 ) and parenchymal fibrin deposition (9±5 vs 23±5/mm 2 ) compared to untreated DM rats. Moreover, the CEE treatment significantly improved hippocampal related learning and memory measured by the Morris Water Maze and odor-based novelty recognition for olfactory memory, without altering the glucose level. In vitro, cerebral endothelial cells isolated from 2M DM rats exhibited substantial dysfunction as measured by capillary-like tube formation and cell migration, whereas incubation with the CEE substantially reversed endothelial dysfunction. Conclusions: The CEE treatment reduces DM-induced glymphatic and cerebral endothelial dysfunctions, leading to improvement of cognitive function in aged DM rats.


1993 ◽  
Vol 20 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Albert Amberger ◽  
Peter F. Lemkin ◽  
Peter Sonderegger ◽  
Hans C. Bauer

2003 ◽  
Vol 23 (11) ◽  
pp. 1348-1355 ◽  
Author(s):  
Anuska V Andjelkovic ◽  
Svetlana M Stamatovic ◽  
Richard F Keep

Ischemic preconditioning (PC) can markedly reduce ensuing ischemic damage. Although most attention has focused on the neuronal effects of PC, the authors have recently shown that ischemic PC reduces ischemia-induced cerebrovascular damage. In vivo, it is difficult to ascertain whether this is a direct cerebrovascular effect of PC. This study, therefore, examined whether cerebral endothelial cells can be preconditioned in vitro in the absence of other cell types. Experiments were performed on an immortalized mouse brain endothelial cell line or primary cultures of mouse brain microvessel endothelial cells. Cells were exposed to oxygen glucose deprivation (OGD) of either short duration, as a PC stimulus, or a long duration (5 hours) with or without reoxygenation to induce endothelial damage. Endothelial injury was assessed by measuring lactate dehydrogenase release and the expression of intercellular adhesion molecule-1 at the protein and mRNA levels. Experiments indicated that 1 hour of OGD was the optimal PC stimuli and that a 1 or 3 day interval was the optimal time interval between the PC stimulus and the injurious event. Preconditioned cells had less lactate dehydrogenase release during OGD (± reoxygenation) and reduced intercellular adhesion molecule-1 expression after OGD with reoxygenation. This study shows that cerebral endothelial cells can be directly preconditioned. The importance of this phenomenon in the overall effects of PC on the brain remains to be elucidated. Understanding the protective mechanisms elicited by PC may give insight into how to prevent ischemia-induced vascular damage (e.g., hemorrhagic transformation).


1995 ◽  
Vol 50 (2) ◽  
pp. 271-273 ◽  
Author(s):  
H.E. De Vries ◽  
B. Breedveld ◽  
J. Kuiper ◽  
A.G. De Boer ◽  
Th.J.C. Van Berkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document