ESTROGENS AND CARCASS COMPOSITION OF BEEF CATTLE

2009 ◽  
Vol 15 (4) ◽  
pp. 104-107
2017 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
V. M. Artegoitia ◽  
A. P. Foote ◽  
R. G. Tait ◽  
L. A. Kuehn ◽  
R. M. Lewis ◽  
...  

1993 ◽  
Vol 56 (1) ◽  
pp. 61-67 ◽  
Author(s):  
R. W. J. Steen

AbstractTwo randomized-block experiments were carried out to examine the relative value of wheat and barley as supplements to grass silage for finishing beef cattle. In each experiment unwilted, formic acid-treated silage was offered ad libitum and supplemented with 500 g soya-bean meal and 50 g minerals and vitamins to 44 12-month-old bulls for 157 and 172 days in experiments 1 and 2 respectively. Twelve of the animals also received 2·5 kg rolled spring barley (LB), 12 received 4·0 kg barley (HB) and 20 received 3·25 kg rolled wheat (W). For experiments 1 and 2 respectively the barley contained 796 and 787 g dry matter (DM) per kg; 118 and 105 g crude protein (CP) per kg DM; 47 and 57 g crude fibre per kg DM; the wheat contained 845 and 800 g DM per kg; 112 and 116 g CP per kg DM; 23 and 25 g crude fibre per kg DM; and the silages contained 190 and 177 g DM per kg; 153 and 176 g CP per kg DM; 80 and 104 g ammonia-nitrogen per kg total nitrogen. On average over the two experiments, for treatments LB, HB and W respectively, silage DM intakes were 5·4, 4·7 (s.e. 0·14) and 4·9 (s.e. 0·11) kg/day; total DM intakes 7·9, 8·3 (s.e. 0·14) and 8·1 (s.e. 0·11) kg/day; metabolizable energy intakes 91·4, 97·8 and 94·2 MJ/day; live-weight gains 1·04,1·19 (s.e. 0·029) and 1·10 (s.e. 0·023) kg/day and carcass gams 0·65, 0·77 (s.e. 0·017) and 0·70 (s.e. 0·013) kg/day. It is concluded that the feeding value of wheat was proportionately 0·98 of that of barley for finishing beef cattle when given as a supplement to grass silage, and that the type of cereal offered did not affect silage intake or carcass composition.


1999 ◽  
Vol 77 (4) ◽  
pp. 889 ◽  
Author(s):  
D B Griffin ◽  
J W Savell ◽  
H A Recio ◽  
R P Garrett ◽  
H R Cross

2003 ◽  
Vol 83 (3) ◽  
pp. 429-434 ◽  
Author(s):  
R. Bergen ◽  
D. H. Crews ◽  
Jr., S. P. Miller ◽  
J. J. McKinnon

The value of live ultrasound longissimus dorsi depth and width measurements as predictors of estimated carcass lean meat yield of steers (CARLEAN-S) and bulls (CARLEAN-B) was studied. In trial 1, equations were developed to predict estimated lean meat yield of steers (n = 116) from carcass weight (Eq. 1) or liveweight (Eq. 2), fat depth and l. dorsi area or liveweight, fat depth and l. dorsi depth × width (Eq. 3). Equation 1 was most precise (RSD = 25.6 g kg-1), followed by Eq. 2 (RSD = 27.8g kg-1) and Eq. 3 (RSD = 30.2g kg-1). Equations 2 and 3 predicted CARLEAN-S with similar accuracy (SEP = 23.8 vs. 24.9 g kg-1, respectively) and were highly correlated with each other (r = 0.89) in an independent data set (n = 118). Repeatability and accuracy of pre-slaughter l. dorsi depth and width measurements were studied in yearling bulls (trial 2; n = 191). When ultrasound measurements were expressed as a percentage of the average ultrasound measurement, repeatabilities of l. dorsi depth (SER = 6.2 to 7.8%) and width (SER = 4.2 to 6.1%) measurements were similar to fat depth and l. dorsi area measurements (SER = 17.9 and 4.5%, respectively). When ultrasound measurements were compared to the corresponding carcass measurements, l. dorsi depth (SEP = 10.3 to 13.9%) and width (SEP = 6.7 to 8.5%) measurements were as accurate as fat depth and l. dorsi area measurements (SEP = 32.9 and 8.4%, respectively). Equations were developed to predict CARLEAN-B of yearling bulls (n = 82) from liveweight, 12th rib ultrasound fat depth and either l. dorsi depth × width measurements (Eqs. 4 and 5) or two l. dorsi depth measurements (Eq. 6). All equations had similar precision (RSD = 19.4 to 19.5 g kg-1) and predicted CARLEAN-B similarly (SEP = 25.0, 24.6 and 26.1g kg-1 for Eqs. 4, 5 and 6, respectively) in an independent data set (n = 109). All equations were highly correlated (r ≥0.97) with an equation using ultrasound fat depth and l. dorsi area in the independent data set. Longissimus muscle depth and width measurements were as valuable as l. dorsi area for predicting carcass composition of yearling beef bulls in the present study. Key words: Ultrasound, beef cattle, carcass traits


2018 ◽  
Vol 3 (1) ◽  
pp. 247-255
Author(s):  
Garth A Gatson ◽  
Patrick J Gunn ◽  
W Darrell Busby ◽  
Bryon R Wiegand ◽  
Brian L Vander Ley ◽  
...  

Abstract Our objective was to determine the effects of dry and wet conditions during the preweaning on subsequent feedlot performance and carcass characteristics of beef cattle. Steers (n = 7,432) and heifers (n = 2,361) finished in 16 feedlots in southwestern Iowa through the Tri-County Steer Carcass Futurity Cooperative were used for a retrospective analysis. Cattle originated in the Midwest (Iowa, Missouri, Indiana, Illinois, and Minnesota) and were born in February, March, or April of 2002 through 2013. Feedlot performance and carcass composition data were obtained for each animal. Palmer Drought Severity Index (PDSI) values were obtained for each animal’s preweaning environment on a monthly basis. Mean PDSI values were used to classify conditions as dry (≤−2.0), normal (>−2.0 and <2.0), or wet (≥2.0) for the cool (April and May), warm (June through August), and combined (April through August) forage growing seasons preweaning. Mixed models were used to evaluate the effects of PDSI class on subsequent performance. Calf sex, date of birth (as day of year), year, and feedlot were also included as fixed effects. When considering PDSI class during the cool season, cattle from normal and wet classes had a greater feedlot delivery BW (P < 0.0001) than dry. Dry and normal classes had greater (P ≤ 0.02) delivery BW than wet during the warm and combined seasons, however. For the cool season, average daily gain was greater (P < 0.0001) for the dry class than normal and wet. Cattle from the normal class for the cool season had greater (P = 0.001) final BW than wet, but the wet class had the greatest (P < 0.04) and dry class had the lowest (P < 0.01) final BW during the warm season. During the cool season, HCW was greater (P < 0.007) for the normal than wet class, although HCW was greater (P ≤ 0.02) for wet compared with dry and normal during the warm season. Calculated yield grade was lower (P ≤ 0.006) for the normal class during the cool season compared with dry and wet. For both the warm and combined seasons, the dry class had lower (P ≤ 0.004) calculated yield grade compared with normal and wet. Carcasses from cattle that experienced normal or wet warm seasons had greater (P ≤ 0.0005) marbling scores than dry, and normal had greater (P = 0.0009) marbling score than dry for the combined seasons. In conclusion, these data indicate that both dry and wet conditions during the preweaning phase may impact ultimate feedlot performance and carcass composition.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 295 ◽  
Author(s):  
Sayed Haidar Abbas Raza ◽  
Nurgulsim Kaster ◽  
Rajwali Khan ◽  
Sameh A. Abdelnour ◽  
Mohamed E. Abd El-Hack ◽  
...  

In this review, we highlight information on microRNA (miRNA) identification and functional characterization in the beef for muscle and carcass composition traits, with an emphasis on Qinchuan beef cattle, and discuss the current challenges and future directions for the use of miRNA as a biomarker in cattle for breeding programs to improve meat quality and carcass traits. MicroRNAs are endogenous and non-coding RNA that have the function of making post-transcriptional modifications during the process of preadipocyte differentiation in mammals. Many studies claim that diverse miRNAs have an impact on adipogenesis. Furthermore, their target genes are associated with every phase of adipocyte differentiation. It has been confirmed that, during adipogenesis, several miRNAs are differentially expressed, including miR-204, miR-224, and miR-33. The development of mammalian skeletal muscle is sequentially controlled by somite commitment into progenitor cells, followed by their fusion and migration, the proliferation of myoblasts, and final modification into fast- and slow-twitch muscle fibers. It has been reported that miRNA in the bovine MEG3-DIO3 locus has a regulatory function for myoblast differentiation. Likewise, miR-224 has been associated with controlling the differentiation of bovine adipocytes by targeting lipoprotein lipase. Through the posttranscriptional downregulation of KLF6, miR-148a-3p disrupts the proliferation of bovine myoblasts and stimulates apoptosis while the miR-23a~27a~24-2 cluster represses adipogenesis. Additional to influences on muscle and fat, bta-mir-182, bta-mir-183, and bta-mir-338 represent regulators of proteolysis in muscle, which influences meat tenderness.


Author(s):  
C.L. Thorp ◽  
R.W.J. Steen ◽  
A.R.G. Wylie ◽  
J.D. McEvoy ◽  
C. Shaw

Studies have shown that reducing energy intake by restricting dry matter intake (DMI) at a constant forage: concentrate (F:C) ratio is more effective at increasing carcass lean and reducing carcass fat content than is reducing energy intake by increasing the F:C ratio (1). Research at this Institute has also shown that, per megajoule of digestible energy (DE), diets restricted in this manner are 45 % more efficient at producing carcass lean.The mechanism by which these methods of restriction result in these differences in carcass composition has previously been assumed to be that of rumen fermentation. More recently however, the significance of rumen fermentation in controlling the carcass composition of beef cattle has been questioned (2,3).The aim of this experiment was to examine the effect of decreasing the F:C ratio, at constant DE and DMI, on both rumen and endocrinological parameters, in particular the hormones insulin and insulin like growth factor-1 (IGF-1), in finishing beef steers.


Author(s):  
M. G. Keane ◽  
G. J. More O’ Ferrall ◽  
J. Connolly

Factors which affect the carcass composition of beef cattle include breed type, plane of nutrition and slaughter weight. With increasing weight, the relative proportions of the carcass joints and tissues change and if these changes were known or could be predicted then cattle could be slaughtered at the desired carcass composition. Dairy bred calves for beef production can be classified into three breed categories -straightbred Friesians, early maturing beef breed x Friesians and late maturing beef breed x Friesians. The objectives of the present study were to compare the changes in carcass composition associated with changes in slaughter weight in Friesian (FF), Hereford x Friesian (HF) and Charolais x Friesian (CF) steers and to determine the effects of dietary metabolisable energy (ME) content.


1994 ◽  
Vol 74 (4) ◽  
pp. 621-632 ◽  
Author(s):  
J. A. Newman ◽  
A. K. W. Tong ◽  
S. D. M. Jones ◽  
G. W. Rahnefeld ◽  
D. R. C. Bailey ◽  
...  

Breed-of-dam and sex-of-calf effects are reported based on observation of 2007 heifer and steer carcasses. The carcasses were derived from Limousin-sired calves born to dams representing 15 F1 and backcross genotypes reared at two locations over a period of 5 yr. The calves represented Hereford × Angus, Charolais × Shorthorn, Simmental × Shorthorn and all backcross combinations involving Charolais or Simmental with Hereford, Angus or Shorthorn. Carcass traits were analyzed on an unadjusted, a constant hot-carcass weight, and a constant rib-fat depth basis. The slaughter criteria dictated that steers were heavier at slaughter than heifers. They also exhibited higher dressing yield, greater longissimus thoracis area, and lower fat depth. Charolais and Simmental breeding was associated with less rib fat depth, greater longissimus thoracis area, a higher proportion of preferred cuts, less dissectible fat, more bone and more lean in the preferred cuts than British beef breeding. Within the European (Charolais and Simmental) and British beef (Hereford, Angus and Shorthorn) breed groups, breed effects were smaller, but for carcass composition traits they were frequently significant. When compared with Simmental, Charolais breeding tended to be associated with less marbling, less rib fat depth, less dissectible fat and more lean in the preferred cuts. Among the British beef breeds, Hereford was associated with the highest proportion of preferred cuts, Shorthorn with the lowest rib fat depth — but the highest dissectible fat — and Angus with the most marbling, the greatest longissimus thoracis area and the lowest bone content. This research has demonstrated that breed effects for carcass composition traits tend to be additive and that a significant effect may be associated with substitution of as little as one-eighth of the breed composition. Key words: Beef cattle, slaughter traits, carcass traits, breed type, crossbred dam, backcross dam


Sign in / Sign up

Export Citation Format

Share Document