scholarly journals Serotypes, virulence markers and cell invasion ability of Shiga toxin-producing Escherichia coli strains isolated from healthy dairy cattle

2016 ◽  
Vol 121 (4) ◽  
pp. 1130-1143 ◽  
Author(s):  
A.G.M. Gonzalez ◽  
A.M.F. Cerqueira ◽  
B.E.C. Guth ◽  
C.A. Coutinho ◽  
M.H.T. Liberal ◽  
...  
2005 ◽  
Vol 105 (1) ◽  
pp. 29-36 ◽  
Author(s):  
K. Irino ◽  
M.A.M.F. Kato ◽  
T.M.I. Vaz ◽  
I.I. Ramos ◽  
M.A.C. Souza ◽  
...  

2002 ◽  
Vol 128 (3) ◽  
pp. 357-362 ◽  
Author(s):  
N. FEGAN ◽  
P. DESMARCHELIER

There is very little human disease associated with enterohaemorrhagic Escherichia coli O157 in Australia even though these organisms are present in the animal population. A group of Australian isolates of E. coli O157:H7 and O157:H- from human and animal sources were tested for the presence of virulence markers and compared by XbaI DNA macrorestriction analysis using pulsed-field gel electrophoresis (PFGE). Each of 102 isolates tested contained the gene eae which encodes the E. coli attaching and effacing factor and all but one carried the enterohaemolysin gene, ehxA, found on the EHEC plasmid. The most common Shiga toxin gene carried was stx2c, either alone (16%) or in combination with stx1 (74%) or stx2 (3%). PFGE grouped the isolates based on H serotype and some clusters were source specific. Australian E. coli O157:H7 and H- isolates from human, animal and meat sources carry all the virulence markers associated with EHEC disease in humans therefore other factors must be responsible for the low rates of human infection in Australia.


2009 ◽  
Vol 75 (20) ◽  
pp. 6462-6470 ◽  
Author(s):  
Angelika Miko ◽  
Karin Pries ◽  
Sabine Haby ◽  
Katja Steege ◽  
Nadine Albrecht ◽  
...  

ABSTRACT A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx 2, stx 2d, and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains.


2013 ◽  
Vol 75 (9) ◽  
pp. 1219-1221 ◽  
Author(s):  
Yoshimasa SASAKI ◽  
Mariko MURAKAMI ◽  
Noriko MARUYAMA ◽  
Kenshu YAMAMOTO ◽  
Mika HARUNA ◽  
...  

2014 ◽  
Vol 53 (3) ◽  
pp. 986-990 ◽  
Author(s):  
Linda Chui ◽  
Vincent Li ◽  
Patrick Fach ◽  
Sabine Delannoy ◽  
Katarzyna Malejczyk ◽  
...  

Virulence markers in Shiga toxin-producingEscherichia coli(STEC) and their association with diseases remain largely unknown. This study determines the importance of 44 genetic markers for STEC (O157 and non-O157) from human clinical cases and their correlation to disease outcome. STEC isolated from a cattle surveillance program were also included. The virulence genes tested were present in almost all O157:H7 isolates but highly variable in non-O157 STEC isolates. Patient age was a significant determinant of clinical outcome.


2008 ◽  
Vol 74 (15) ◽  
pp. 4806-4816 ◽  
Author(s):  
Lothar Beutin ◽  
Ulrike Krüger ◽  
Gladys Krause ◽  
Angelika Miko ◽  
Annett Martin ◽  
...  

ABSTRACT Shiga toxin 2e (Stx2e)-producing strains from food (n = 36), slaughtered pigs (n = 25), the environment (n = 21), diseased pigs (n = 19), and humans (n = 9) were investigated for production of Stx2e by enzyme-linked immunosorbent assay, for virulence markers by PCR, and for their serotypes to evaluate their role as potential human pathogens. Stx2e production was low in 64% of all 110 strains. Stx2e production was inducible by mitomycin C but differed considerably between strains. Analysis by nucleotide sequencing and transcription of stx 2e genes in high- and low-Stx2e-producing strains showed that toxin production correlated with transcription rates of stx 2e genes. DNA sequences specific for the int, Q, dam, and S genes of the stx 2e bacteriophage P27 were found in 109 strains, indicating cryptic P27-like prophages, although 102 of these were not complete for all genes tested. Genes encoding intimin (eae), enterohemorrhagic Escherichia coli hemolysin (ehx), or other stx 1 or stx 2 variants were not found, whereas genes for heat-stable enterotoxins STI, STII, or EAST1 were present in 54.5% of the strains. Seven major serotypes that were associated with diseased pigs (O138:H14, O139:H1, and O141:H4) or with slaughter pigs, food, and the environment (O8:H4, O8:H9, O100:H30, and O101:H9) accounted for 60% of all Stx2e strains. The human Stx2e isolates did not belong to these major serotypes of Stx2e strains, and high production of Stx2e in human strains was not related to diarrheal disease. The results from this study and other studies do not point to Stx2e as a pathogenicity factor for diarrhea and hemolytic uremic syndrome in humans.


Sign in / Sign up

Export Citation Format

Share Document