Influence of habitat availability and fire disturbance on a northern range boundary

2020 ◽  
Author(s):  
Bronwyn Rayfield ◽  
Véronique Paul ◽  
Francine Tremblay ◽  
Marie‐Josée Fortin ◽  
Christelle Hély ◽  
...  
2018 ◽  
Vol 169 (5) ◽  
pp. 260-268 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Violette Doublet ◽  
Cynthia Nussbaumer ◽  
Linda Feichtinger ◽  
Andreas Rigling

Vegetation shift in Scots pine forests in the Valais accelerated by large disturbances In the past dozen years, several studies have concluded a vegetation shift from Scots pine to oak (pubescent and sessile) forests in the low elevated zones of the Valais. It is, however, not fully clear in which way such a vegetation shift actually occurs and on which processes such a shift would be based. Two studies, one on the tree demography in the intact Pfynwald and the other on the tree regeneration on the large Leuk forest fire patch, serve to discuss different aspects of the shift from Scots pine to oak. The forest stands of Pfynwald consist of 67% Scots pines and 14% oaks. Regenerating trees are 2–3.5 times more frequent in small gaps than under canopy. In gaps of the Upper Pfynwald, seedlings and saplings of Scots pine are three times more abundant than oaks, while both species regenerate in similar quantities under canopy. In the Lower Pfynwald, young oaks – especially seedlings – are more frequent than Scots pines. A different process is going on at the lower part in the Leuk forest fire patch where Scots pines prevailed before the burn of 2003. While Scots pines regenerate exclusively close to the edge of the intact forest, oaks not only resprout from trunk but also profit from unlimited spreading of their seeds by the Eurasian jay. Regeneration from seeds are hence observed in the whole studied area, independent of the proximity of seed trees. After the large fire disturbance, a mixed forests with a high share of oaks is establishing, which translates to a rapid vegetation shift. The two trajectories are discussed in the light of climate change.


Author(s):  
Tiziana Pedrotta ◽  
Erika Gobet ◽  
Christoph Schwörer ◽  
Giorgia Beffa ◽  
Christoph Butz ◽  
...  

AbstractKnowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record covering the past ~ 8,000 years from Lago di Baratz, north-west Sardinia. Vegetation and fire history are reconstructed by pollen, spores, macrofossils and charcoal analyses and environmental dynamics by high-resolution element geochemistry together with pigment analyses. During the period 8,100–7,500 cal bp, when seasonality was high and fire and erosion were frequent, Erica arborea and E. scoparia woodlands dominated the coastal landscape. Subsequently, between 7,500 and 5,500 cal bp, seasonality gradually declined and thermo-mediterranean woodlands with Pistacia and Quercus ilex partially replaced Erica communities under diminished incidence of fire. After 5,500 cal bp, evergreen oak forests expanded markedly, erosion declined and lake levels increased, likely in response to increasing (summer) moisture availability. Increased anthropogenic fire disturbance triggered shrubland expansions (e.g. Tamarix and Pistacia) around 5,000–4,500 cal bp. Subsequently around 4,000–3,500 cal bp evergreen oak-olive forests expanded massively when fire activity declined and lake productivity and anoxia reached Holocene maxima. Land-use activities during the past 4,000 years (since the Bronze Age) gradually disrupted coastal forests, but relict stands persisted under rather stable environmental conditions until ca. 200 cal bp, when agricultural activities intensified and Pinus and Eucalyptus were planted to stabilize the sand dunes. Pervasive prehistoric land-use activities since at least the Bronze Age Nuraghi period included the cultivation of Prunus, Olea europaea and Juglans regia after 3,500–3,300 cal bp, and Quercus suber after 2,500 cal bp. We conclude that restoring less flammable native Q. ilex and O. europaea forest communities would markedly reduce fire risk and erodibility compared to recent forest plantations with flammable non-native trees (e.g. Pinus, Eucalyptus) and xerophytic shrubland (e.g. Cistus, Erica).


Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


2019 ◽  
Vol 89 (3) ◽  
Author(s):  
Carl A. Roland ◽  
Joshua H. Schmidt ◽  
Samantha G. Winder ◽  
Sarah E. Stehn ◽  
E. Fleur Nicklen

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 487
Author(s):  
Lillian Collins ◽  
Grant D. Paton ◽  
Sara A. Gagné

The urbanization of landscapes filters bird communities to favor particular species traits, driven in part by the changes that homeowners make to the amount and quality of habitat in yards. We suggest that an ultimate driver of these proximate mechanisms underlying bird community change with respect to urbanization is the likeability of species traits by urban residents. We hypothesize that bird species likeability, modulated by species traits, influences the degree to which homeowners alter the availability and quality of habitat on their properties and thereby affects species population sizes in urbanized landscapes. We refer to this new hypothesis as the Likeable, therefore Abundant Hypothesis. The Likeable, therefore Abundant Hypothesis predicts that (1) bird species likeability varies with species morphological and behavioral traits, (2) homeowners use trait-based likeability as a motivator to modify habitat availability and quality on their properties, and (3) residential habitat availability and quality influences species populations at landscape scales. We tested the first prediction of the Likeable, therefore Abundant Hypothesis using a survey of 298 undergraduate students at the University of North Carolina at Charlotte who were asked to rank their preferences for 85 forest generalist and edge/open country songbird species grouped according to 10 morphological and behavioral traits. Survey respondents preferred very small, primarily blue or black species that are insectivorous, aerial or bark foragers, residents, and culturally unimportant. On the other hand, respondents disliked large or very large, primarily yellow or orange species that forage on the ground and/or forage by flycatching, are migratory, and are culturally important. If the Likeable, therefore Abundant Hypothesis is true, natural resource managers and planners could capitalize on the high likeability of species that are nevertheless negatively affected by urbanization to convince homeowners and residents to actively manage their properties for species conservation.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 150
Author(s):  
Lance Jay Roberts ◽  
Ryan Burnett ◽  
Alissa Fogg

Silvicultural treatments, fire, and insect outbreaks are the primary disturbance events currently affecting forests in the Sierra Nevada Mountains of California, a region where plants and wildlife are highly adapted to a frequent-fire disturbance regime that has been suppressed for decades. Although the effects of both fire and silviculture on wildlife have been studied by many, there are few studies that directly compare their long-term effects on wildlife communities. We conducted avian point counts from 2010 to 2019 at 1987 in situ field survey locations across eight national forests and collected fire and silvicultural treatment data from 1987 to 2016, resulting in a 20-year post-disturbance chronosequence. We evaluated two categories of fire severity in comparison to silvicultural management (largely pre-commercial and commercial thinning treatments) as well as undisturbed locations to model their influences on abundances of 71 breeding bird species. More species (48% of the community) reached peak abundance at moderate-high-severity-fire locations than at low-severity fire (8%), silvicultural management (16%), or undisturbed (13%) locations. Total community abundance was highest in undisturbed dense forests as well as in the first few years after silvicultural management and lowest in the first few years after moderate-high-severity fire, then abundance in all types of disturbed habitats was similar by 10 years after disturbance. Even though the total community abundance was relatively low in moderate-high-severity-fire habitats, species diversity was the highest. Moderate-high-severity fire supported a unique portion of the avian community, while low-severity fire and silvicultural management were relatively similar. We conclude that a significant portion of the bird community in the Sierra Nevada region is dependent on moderate-high-severity fire and thus recommend that a prescribed and managed wildfire program that incorporates a variety of fire effects will best maintain biodiversity in this region.


1993 ◽  
Vol 37 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Mary C. Freeman ◽  
Gary D. Grossman
Keyword(s):  

2016 ◽  
Vol 25 (2) ◽  
pp. 213 ◽  
Author(s):  
Kajar Köster ◽  
Frank Berninger ◽  
Jussi Heinonsalo ◽  
Aki Lindén ◽  
Egle Köster ◽  
...  

In boreal forest ecosystems fire, fungi and bacteria, and their interactions, have a pronounced effect on soil carbon dynamics. In this study we measured enzymatic activities, litter decomposition rates, carbon stocks and fungal and microbial biomasses in a boreal subarctic coniferous forest on a four age classes of non-stand replacing fire chronosequence (2, 42, 60 and 152 years after the fire). The results show that microbial activity recovered slowly after fire and the decomposition of new litter was affected by the disturbance. The percent mass loss of Scots pine litter increased with time from the last fire. Slow litter decomposition during the first post-fire years accelerates soil organic matter accumulation that is essential for the recovery of soil biological activities. Fire reduced the enzymatic activity across all the enzyme types measured. Carbon-degrading, chitin-degrading and phosphorus-dissolving enzymes showed different responses with the time elapsed since the fire disturbance. Microbial and enzymatic activity took decades before recovering to the levels observed in old forest stands. Our study demonstrates that slower post-fire litter decomposition has a pronounced impact on the recovery of soil organic matter following forest fires in northern boreal coniferous forests.


Sign in / Sign up

Export Citation Format

Share Document