macrophyte growth
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chao Xu ◽  
Hai-Jun Wang ◽  
Yan Li ◽  
Chi Xu ◽  
Qing Yu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Marino Korlević ◽  
Marsej Markovski ◽  
Zihao Zhao ◽  
Gerhard J. Herndl ◽  
Mirjana Najdek

Surfaces of marine macrophytes are inhabited by diverse microbial communities. Most studies focusing on epiphytic communities of macrophytes did not take into account temporal changes or applied low sampling frequency approaches. The seasonal dynamics of epiphytic microbial communities was determined in a meadow of Cymodocea nodosa invaded by Caulerpa cylindracea and in a monospecific settlement of C. cylindracea at monthly intervals. For comparison the ambient prokaryotic picoplankton community was also characterized. At the OTU level, the microbial community composition differed between the ambient water and the epiphytic communities exhibiting host-specificity. Also, successional changes were observed connected to the macrophyte growth cycle. Taxonomic analysis, however, showed similar high rank taxa (phyla and classes) in the ambient water and the epiphytic communities, with the exception of Desulfobacterota, which were only found on C. cylindracea. Cyanobacteria showed seasonal changes while other high rank taxa were present throughout the year. In months of high Cyanobacteria presence the majority of cyanobacterial sequences were classified as Pleurocapsa. Phylogenetic groups present throughout the year (e.g., Saprospiraceae, Rhodobacteraceae, members without known relatives within Gammaproteobacteria, Desulfatitalea, and members without known relatives within Desulfocapsaceae) constituted most of the sequences, while less abundant taxa showed seasonal patterns connected to the macrophyte growth cycle. Taken together, epiphytic microbial communities of the seagrass C. nodosa and the macroalga C. cylindracea appear to be host-specific and contain taxa that undergo successional changes.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Kornelia Duchnik ◽  
Jan Bialczyk ◽  
Ewelina Chrapusta-Srebrny ◽  
Beata Bober

AbstractImpact of macrophyte Lemna trisulca on the growth rate and synthesis of cylindrospermopsin (CYN) by cyanobacterium Raphidiopsis raciborskii was determined. The presence of L. trisulca inhibited the biomass accumulation of the cyanobacterium by 25% compared to the control during co-cultivation. The simultaneous cultivation of these organisms slightly affected the inhibition of macrophyte growth rate by 5.5% compared to the control. However, no morphological changes of L. trisulca after incubation with cyanobacteria were observed. It was also shown that the long-term (35 days) co-cultivation of R. raciborskii and L. trisulca led to a decrease in CYN concentration in media and cyanobacterial cells by 32 and 38%, respectively, compared to the values obtained for independent cultivation of cyanobacterium. Excessive absorption of phosphate ions by L. trisulca from the medium compared to nitrate ions led to a significant increase in the nitrate:phosphate ratio in the media, which inhibits the development of cyanobacterium. The obtained results indicate that L. trisulca in the natural environment may affect the physiology of cyanobacteria. The presented study is the first assessment of the allelopathic interaction of macrophyte and R. raciborskii.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3161
Author(s):  
Jiao Gu ◽  
Kuanyi Li ◽  
Erik Jeppesen ◽  
Yanqing Han ◽  
Hui Jin ◽  
...  

Increased recruitment of small-sized fish following biomanipulation by reducing the biomass of plankti-benthivorous fish, not least in (sub)tropical lakes, may deteriorate water quality and thereby potentially hamper the recovery of submerged macrophytes. Filter-feeding bivalves remove suspended particles from the water and may, thereby, somewhat or fully counteract this negative effect of the increasing abundance of small-sized fish. So far, only few studies have investigated the interactive effects of fish and bivalves on water clarity and macrophyte growth. We conducted a 2 × 2 factorial designed outdoor mesocosm experiment with two densities of small crucian carp Carassius carassius (low 10 g m−2 and high 40 g m−2) and two densities of bivalves Corbicula fluminea (low 204 g m−2 and high 816 g m−2). We found significant interactive effect of fish and bivalves on the growth of the macrophyte Vallisneria natans. In the low density bivalve regime, the relative growth rates, root mass, root:shoot ratio and number of tubers were 30.3%, 30.8%, 21.6% and 27.8% lower in the high than in the low density fish treatments, while the decrease was less pronounced in the high density bivalve regime: 1.2%, 8.7%, 2.1% and 13.3%, respectively. Thus, bivalves reduced the negative effects of fish, not least when bivalve density was high. The weaker effects of small fish on plants in the high- than in the low-density C. fluminea regime can be attributed to lower total suspended solids (TSS) and Chl a in the first week of the experiment. Better light conditions further stimulated the growth of benthic algae, potentially increasing the removal of nutrients from the water and reducing fish-driven resuspension of the sediment. In addition, high densities of C. fluminea also enriched the sediment total nitrogen (TN) and total phosphorus (TP) content, favouring plant growth as indicated by an increase in leaf tissue TN and TP contents. Our results demonstrate that filter-feeding bivalves can alleviate harmful effects of small fish by prolonging a clear-water state that facilitates submerged macrophyte growth. Addition of the bivalve C. fluminea can be a promising tool for the restoration of submerged macrophytes in shallow eutrophic lakes, in particular lakes containing small, rapidly reproducing fish that due to their small sizes are not capable of controlling the bivalves.


2020 ◽  
Vol 274 ◽  
pp. 111181
Author(s):  
P. Manolaki ◽  
M.B. Mouridsen ◽  
E. Nielsen ◽  
A. Olesen ◽  
S.M. Jensen ◽  
...  

2020 ◽  
Vol 82 (4) ◽  
Author(s):  
Nóra Szabó-Tugyi ◽  
Viktor R. Tóth

Abstract Growth of submerged and emergent macrophytes was studied together with heterotrophic bacterioplankton abundance and production in two Hungarian shallow lakes with dominant macrophyte covers. It was expected that bacterioplankton numbers and activity would have an effect on macrophyte biomass accumulation. Bacterial production and abundance showed a strong seasonal pattern with maximum in the warmest months (July, August). It was found that macrophyte biomass increased with heterotrophic bacterial production and abundance up to 5.6 µg C l− 1 h− 1 and 5.30*106 cells, respectively, while over that value was negatively associated with macrophyte growth. It was also shown that the relationship between heterotrophic bacteria and macrophytes also varied seasonally, showing a multifaceted relationship. It was demonstrated that macrophytes are not only the most significant carbon and energy source for the bacteria in shallow, macrophyte-dominated lakes, but are also competing organisms that could be supressed by excessive bacterial activity. These findings could help better understand the interaction between macrophytes and bacterioplankton, and assist wetland managers in quantifying what may be a primary cause of reed die-back.


2020 ◽  
Vol 6 (2) ◽  
pp. 77-94
Author(s):  
Chanda K. Turner ◽  
Trevor C. Lantz ◽  
Jason T. Fisher

Climate change is altering Canada’s western Arctic, including hydrology in the heterogeneous environment of the Mackenzie Delta, and these changes are impacting biotic communities. Muskrats are culturally important semi-aquatic rodents whose populations may respond to changing water levels in this region. We investigated the importance of patch configuration and patch composition — two properties affected by climate change — on muskrat presence and distribution in the Mackenzie Delta, using remote sensing and field-based surveys of lakes with and without muskrats. We tested multiple hypotheses about predictors of muskrat and forage biomass presence using a model-selection approach. We found that configuration and patch composition explained muskrat distribution in the Mackenzie Delta, with composition being of greater importance. Muskrats were more likely to occur in lakes with longer perimeters, higher amounts of forage biomass, and sediment characteristics that supported macrophyte growth. The latter two conditions are related to spring flooding regimes, which will likely be altered by climate change. This may result in a decrease in muskrat habitat in the Mackenzie Delta. Our research indicates that both patch composition and configuration are important for understanding species distributions in heterogeneous environments.


2020 ◽  
Vol 54 (3) ◽  
pp. 512-526 ◽  
Author(s):  
Kathryn E. Collins ◽  
Catherine M. Febria ◽  
Hayley S. Devlin ◽  
Kristy L. Hogsden ◽  
Helen J. Warburton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document