Effect of Reinforcement on the Flexural Properties of Injection-Molded Thermoplastic Denture Base Resins

2015 ◽  
Vol 26 (4) ◽  
pp. 302-308 ◽  
Author(s):  
Hirono Sasaki ◽  
Ippei Hamanaka ◽  
Yutaka Takahashi ◽  
Tomohiro Kawaguchi
2015 ◽  
Vol 815 ◽  
pp. 342-347
Author(s):  
Jun Jun Du ◽  
Hao Yu ◽  
Mei Fang Zhu

A kind of novel antibacterial denture base powder incorporated with PMMA-modified nanoAg/NaZr2(PO4)3(CBD-300) was prepared by in-situ suspension polymerization and the flexural properties of denture base resin was investigated. CBD-300 was silanized by 3-methacryloxy propyl trimethoxyl silane (γ-MPS), and thenγ-MPS-CBD-300 was grafted with poly (methyl methacrylate) (PMMA) to prepare M-CBD-300 which has a good compatibility with the denture base resin. Denture base powders with different addition of M-CBD-300 were prepared by in-situ suspension polymerization. Thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and water contact angle were used to characterize M-CBD-300. The size of denture base powder was observed by optical microscope. Universal testing apparatus and scanning electron microscope (SEM) were used to investigate flexural properties of denture base resin samples. The results showed that the surface of M-CBD-300 was successfully modified by PMMA, and the incorporation of M-CBD-300 leads to increasing of the denture base powder size. The flexural properties of the denture base resin samples prepared with our antibacterial denture base powders were enhanced greatly compared with the blank sample.


2016 ◽  
Vol 51 (8) ◽  
pp. 3793-3805 ◽  
Author(s):  
B. R. Bharath Kumar ◽  
Mrityunjay Doddamani ◽  
Steven E. Zeltmann ◽  
Nikhil Gupta ◽  
Uzma ◽  
...  

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2838-2843 ◽  
Author(s):  
KAZUYA OHKITA ◽  
HITOSHI TAKAGI

In recent years, from an environmental perspective, there has been increasing interest in the change to a sustainable society. The use of natural-fiber-reinforced biodegradable composites has been proposed as one solution. Bamboo is an often used renewable bio-resource; it has an inherent advantage of rapid growth. Polybutylene succinate ( PBS ), used as matrix resin, has biodegradable characteristics. This paper describes flexural properties of bamboo/ PBS composites prepared by injection molding. The following results were obtained. The flexural modulus was improved with increasing bamboo powder contents when the cylinder temperature of the injection molder was 140°C. However, the flexural strength showed the opposite tendency to be decreased with increasing bamboo powder contents. An SEM photomicrograph of the fracture surface for bamboo/ PBS composites showed typical fracture behavior of pull-out fibers without fiber fracture. Furthermore, there was no adhesion of PBS resin on the bamboo fiber surface. Processing conditions affected mechanical properties of bamboo/ PBS composites, imparting higher flexural strength and flexural modulus at high cylinder temperatures such as 180°C and 200°C.


2016 ◽  
Vol 17 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Ayman Al-Dharrab ◽  
Lana Shinawi

ABSTRACT Background Thermoplastic resin polymers are widely used in medicine due to their biostability and hypoallergenic properties, making them a possible alternative to poly-methylmethacrylate (PMMA). The current research examined the microstructure of a rapid injection molding system thermoplastic resin for construction of flexible denture compared with that of heatcured PMMA. Materials and methods A total of 40 disk-shaped specimens (25 mm in diameter and 3 mm in thickness) were prepared and divided into two groups of 20 disks each (group I samples were of thermoplastic acrylic resin while group II was heat-cured PMMA resin). Results In group I, thermogravimetric analyzer showed that increasing the temperature up to 169°C resulted in about 1.3% of the material loss, and after that the material remains thermally stable up to 200°C. Group II showed 2.24% weight loss at 171°C, and further weight loss (12.025%) was observed on heating to 230°C. Fourier transform infrared (FTIR) spectrophotometer analysis in the range of 400–4000 cm-1 detected the presence of an amine group (N-H) in group I samples and the presence of methylene group attached to inorganic Si as reinforcement filler (Si-CH3). Conclusion Thermoplastic resin displayed excellent thermal stability and the absence of residual monomer within the polymerized material, suggesting its suitability for the fabrication dentures. How to cite this article Al-Dharrab A, Shinawi L. Thermogravimetric Characterization of the Microstructure Composition of Polyamide Injection Molded Denture Base Material vs Conventional Compression Molded Heat-cured Denture Base Material. J Contemp Dent Pract 2016;17(2):99-104.


Sign in / Sign up

Export Citation Format

Share Document