Distribution and multiplication of Ralstonia solanacearum strain race 1 biovar 4 in vegetable sweet potato cuttings

2019 ◽  
Vol 168 (1) ◽  
pp. 36-46
Author(s):  
Yi‐Jeng Chen ◽  
Yi‐Sheng Lin ◽  
Hui‐Ru Pan ◽  
Wen‐Hsin Chung

2014 ◽  
Vol 140 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Yi-Jeng Chen ◽  
Yi-Sheng Lin ◽  
Kuo-Jin Tseng ◽  
Wen-Hsin Chung




Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 157 ◽  
Author(s):  
Namisy ◽  
Chen ◽  
Prohens ◽  
Metwally ◽  
Elmahrouk ◽  
...  

Bacterial wilt, caused by Ralstonia solanacearum, is highly diverse and the identification of new sources of resistance for the incorporation of multiple and complementary resistance genes in the same cultivar is the best strategy for durable and stable resistance. The objective of this study was to screen seven accessions of cultivated eggplant (Solanum melongena L.) and 40 accessions from 12 wild relatives for resistance to two virulent R. solanacearum strains (Pss97 and Pss2016; phylotype I, race 1, biovar 3). The resistant or moderately resistant accessions were further evaluated with Pss97 in a second trial under high temperatures (and also with Pss2016 for S. anguivi accession VI050346). The resistant control EG203 was resistant to Pss97, but only moderately resistant to Pss2016. One accession of S. sisymbriifolium (SIS1) and two accessions of S. torvum (TOR2 and TOR3) were resistant or moderately resistant to Pss97 in both trials. Solanum anguivi VI050346, S. incanum accession MM577, and S. sisymbriifolium (SIS1 and SIS2) were resistant to Pss2016 in the first trial. However, S. anguivi VI050346 was susceptible in the second trial. These results are important for breeding resistant rootstocks and cultivars that can be used to manage this endemic disease.



2018 ◽  
Vol 36 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Maurício Rossato ◽  
Thais R. Santiago ◽  
Carlos Alberto Lopes

ABSTRACT In Brazil, the bacterial pathogens Ralstonia solanacearum and R. pseudosolanacearum cause substantial losses by inducing bacterial wilt on several solanaceous crops; R. pseudosolanacearum is the main species associated with peppers (Capsicum sp.). To verify the bacterial wilt reaction on Capsicum peppers commercialized in the Federal District (DF), fruits of several genotypes within this genus were collected from six different fairs distributed in the satellite cities of Gama, Sobradinho and Guará. Seedlings with four true leaves derived from seeds extracted from such fruits were root inoculated with 108 CFU/mL with a representative isolate of R. pseudosolanacearum (race 1, biovar 3, phylotype I, sequevar 18). The evaluated species were: Capsicum frutescens (‘pimenta-malagueta’), Capsicum baccatum var. pendulum (‘pimenta-dedo-de-moça’) and C. chinense (‘pimenta-de-bode’ red and yellow, ‘pimenta-cumarí-do-Pará’, ‘pimenta-biquinho’, ‘pimenta-habanero’ and ‘pimenta-de-cheiro’). Not all species were found in all six fairs. The reaction to bacterial wilt was variable and species-dependent. From 26 evaluated genotypes, none presented an immune-like response, 10 were considered resistant and 16 susceptible based on wilt incidence (Scott-Knott, 5%). Four Capsicum baccatum accesses were positioned in the resistant group, whereas 14 out of 18 of C. chinense were susceptible. Capsicum frutescens showed variable reactions. These results contribute to indicate cultivation of specific groups of pepper according to the presence of the pathogen in the soil.



2019 ◽  
Vol 20 (12) ◽  
pp. 1740-1747 ◽  
Author(s):  
Kazusa Hayashi ◽  
Wakana Senuma ◽  
Kenji Kai ◽  
Akinori Kiba ◽  
Kouhei Ohnishi ◽  
...  


1999 ◽  
Vol 89 (4) ◽  
pp. 320-327 ◽  
Author(s):  
Thierry X. Jaunet ◽  
Jaw-Fen Wang

A population of Ralstonia solanacearum race 1 from tomato (Lycopersicon esculentum) was analyzed for genetic polymorphism and aggressiveness on tomato. The 46 strains were collected from main tomato-growing areas in Taiwan. Genetic analysis was achieved by two polymerase chain reaction (PCR)-based methods: REP-, ERIC-, and BOX-PCR (collectively as rep-PCR) and random amplified polymorphic DNA (RAPD) techniques. RAPD (with three 10-mers) and rep-PCR revealed 35 and 30 haplotypes, respectively, that were grouped in 14 clusters and 3 clusters, respectively. Distribution of strains into genetic clusters did not appear related to biovar or geographic origin in considering RAPD, rep-PCR, or composite data. Although strains were more dissimilar based on RAPD data than on rep-PCR data, the two techniques gave complementary results for strain clustering. A set of 40 strains representing the main haplotypes was inoculated on six tomato cultivars differing in their bacterial wilt resistance. Six groups differing in general level of aggressiveness and cultivar specificity were detected. Although populations were highly diverse in both genotype and aggressiveness, no association was found between the two characteristics. Although the sample sizes in this study were not adequate to draw definite conclusions about population structure, these results will be valuable for future population genetic studies on R. solanacearum.



Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 372-372 ◽  
Author(s):  
A. T. Thera ◽  
B. J. Jacobsen ◽  
O. T. Neher

Ralstonia solanacearum (Smith) Yabuuchi et al. causes bacterial wilt worldwide on a wide range of plant species. In Mali, the disease is commonly found on potato (Solanum tuberosum L.), tomato (Lycopersicon esculentum var. esculentum L.), pepper (Capsicum annuum L.), eggplant (Solanum melongena L.), tobacco (Nicotiana tabacum L.), and peanut (Arachis hypogaea L.). Determination of race and biovar is critical for development of potato seed certification programs for management of the disease. Isolates (25) of R. solanacearum were obtained from wilting potato, pepper, eggplant, tobacco, and tomato plants collected from fields near Baguineda, Sonityeni, Sotuba, Sikasso, and Kolikoro. Isolations were made from bacterial streaming by dilution plating on triphenyl tetrazolium chloride medium (TZC) (2). Characteristic colonies were selected and identified by ELISA or Immunostrips (Pathoscreen Rs, Agdia Inc., Elkhart, IN). These isolates were used in host range studies and hypersensitivity (HR) tests on tobacco (cv. xanthi) (3) and tested for their ability to produce acids on Ayers basal media amended with disaccharide and hexose alcohol carbon sources (1). These isolates caused characteristic wilt 40 days postinoculation on greenhouse-grown tobacco (cv. Xanthi), peanut (cv. 4610), and tomato (cv. Roma VF) plants when stems of five plants of each host were syringe inoculated with 0.1 ml of a 1 × 109 CFU/ml of bacteria. Plants inoculated with sterile distilled water remained symptomless and R. solanacearum was reisolated from infected plants on TZC and identified with Immunostrips. All HR tests were negative. Infection of peanut, tobacco, and tomato and the results of the HR tests indicated that all isolates were Race 1 and no significant variation was noted between isolates. Acid was produced from the hexose alcohols: mannitol, sorbitol, and dulcitol; and the disaccharides: cellobiose, lactose, and maltose. This indicated that all isolates were biovar 3, the same as a known Race 1 strain from tobacco (MSU Plant Pathology teaching collection) (1). To assess relative distribution of R. solanacearum, 20 soil samples collected from potato fields in the vicinity of Baguineda, Kati, Koulikoro, and Sikasso were placed in pots (30 × 25 cm) under shade cloth at the IER Station in Sotuba and planted with 30-day-old tobacco plants. After 90 days, infected plants (35 to 100% infection) were found in all soils. Infected plants exhibited classical wilt symptoms and tested positive for R. solanacearum infections as confirmed by Immunostrip tests. Six of nine surface water samples taken near potato fields in Baguineda, Sikasso, Mopti, and Koulikoro tested positive for the presence of R. solanacearum by an Agdia Inc. enrichment kit and ELISA. A weed, Commelina forskalaei (Vahl), collected by Farako creek near Sikasso tested positive in the Immunostrip test even though no symptoms were obvious. No attempt was made to characterize the race, biovar, or phylotype of the soil, water, and weed isolates. To our knowledge, this is the first time that the race and biovar of R. solanacearum from Mali has been reported and the wide distribution of this pathogen in Malian soils and surface water has been demonstrated. It is significant that we did not detect Race 3 biovar 2, which is subject to quarantine and biosecurity regulations. References: (1) A. C. Hayward. J. Bacteriol. 27:265, 1964. (2) A. Kelman. Phytopathology 44:693, 1954. (3) J. Lozano and L. Sequeira. Phytopathology 60:833, 1970.



2021 ◽  
Vol 39 (4) ◽  
pp. 411-416
Author(s):  
Carlos A Lopes ◽  
Agnaldo DF Carvalho ◽  
Arione S Pereira ◽  
Fernanda Q Azevedo ◽  
Caroline M Castro ◽  
...  

ABSTRACT Bacterial wilt (BW), or brown rot, caused by the soil and seed borne bacterium Ralstonia solanacearum, is one of the most devastating diseases of potatoes cultivated in warmer regions of the world. There are no potato cultivars with a desirable level of BW resistance, although it has been recognized that resistance can be an outstanding component for disease management. However, the sources of resistance available lack agronomic traits required by potato growers, therefore being of little interest to breeders. The objective of this work was to evaluate the performance of 11 clones selected for BW resistance and improved for tuber traits upon selection in the last two decades. The clones under test were compared with susceptible and resistant clones and cultivars, in a completely randomized blocks design with three replications of single lines of 10 plants, in a field naturally infested with race 1, biovar 1, phylotype II of R. solanacearum. BW incidence was assessed 60-70 days after planting and total tuber yield in each plot was recorded 110 days after planting. All the evaluated clones presented higher levels of resistance to BW compared with the commercial varieties, not differing from the resistant, not commercial, controls. In a next step, these clones will be characterized for other desirable traits and those which combine high level of resistance and commercial characteristics will be recommended for breeders for enriching the genotypic background in the search for commercial varieties. We also confirmed that the cultivar BRSIPR Bel displays an intermediate level of resistance, what makes it an interesting genitor for its good agronomic characteristics. The findings of this work demonstrate that the improved potato clones selected under tropical conditions in the Embrapa’s pre-breeding project possess high and stable levels of resistance to bacterial wilt, being a valuable resource for breeders.



2020 ◽  
Vol 38 (2) ◽  
pp. 126-133
Author(s):  
Paula Andrea O Carmona ◽  
Jadir B Pinheiro ◽  
Geovani Bernardo Amaro ◽  
Giovani Olegario da Silva ◽  
José Ricardo Peixoto ◽  
...  

ABSTRACT One of the main obstacles for food production in many developing countries, as in Brazil, is the damage caused by root-knot nematodes, mainly those belonging to the genus Meloidogyne. This study aimed to assess the resistance levels of 44 sweet potato genotypes to M. javanica, M. incognita race 1 and M. enterolobii. These researches were carried out in 2014, under greenhouse conditions in Brasília-DF, Brazil. A completely randomized design with six replicates of one plant/plot/treatment was used. We determined the gall index (GI) and egg mass index (EMI) in the root system of each plant, the number of eggs and juveniles per gram of root with galls and the nematode reproduction factor. M. javanica was less aggressive and reproduced in only 9.09% of the evaluated genotypes; M. incognita race 1 was intermediate (47.73%); whereas M. enterolobii was more aggressive, with a population increase in 79.55% of the genotypes. The genotypes CNPH 1200, CNPH 1219, CNPH 1292, CNPH 1392, CNPH 60 and ‘Coquinho’ were the most resistant to the three species and can be used in breeding programs for multiple resistance to root-knot nematodes.



2020 ◽  
Vol 8 (3) ◽  
pp. 46
Author(s):  
Deju Chen ◽  
Haifeng Zhang ◽  
Yanli Li ◽  
Yanpin Chen ◽  
Xuefang Zheng ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document