scholarly journals Bacterial Wilt of Solanaceae Caused by Ralstonia solanacearum Race 1 Biovar 3 in Mali

Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 372-372 ◽  
Author(s):  
A. T. Thera ◽  
B. J. Jacobsen ◽  
O. T. Neher

Ralstonia solanacearum (Smith) Yabuuchi et al. causes bacterial wilt worldwide on a wide range of plant species. In Mali, the disease is commonly found on potato (Solanum tuberosum L.), tomato (Lycopersicon esculentum var. esculentum L.), pepper (Capsicum annuum L.), eggplant (Solanum melongena L.), tobacco (Nicotiana tabacum L.), and peanut (Arachis hypogaea L.). Determination of race and biovar is critical for development of potato seed certification programs for management of the disease. Isolates (25) of R. solanacearum were obtained from wilting potato, pepper, eggplant, tobacco, and tomato plants collected from fields near Baguineda, Sonityeni, Sotuba, Sikasso, and Kolikoro. Isolations were made from bacterial streaming by dilution plating on triphenyl tetrazolium chloride medium (TZC) (2). Characteristic colonies were selected and identified by ELISA or Immunostrips (Pathoscreen Rs, Agdia Inc., Elkhart, IN). These isolates were used in host range studies and hypersensitivity (HR) tests on tobacco (cv. xanthi) (3) and tested for their ability to produce acids on Ayers basal media amended with disaccharide and hexose alcohol carbon sources (1). These isolates caused characteristic wilt 40 days postinoculation on greenhouse-grown tobacco (cv. Xanthi), peanut (cv. 4610), and tomato (cv. Roma VF) plants when stems of five plants of each host were syringe inoculated with 0.1 ml of a 1 × 109 CFU/ml of bacteria. Plants inoculated with sterile distilled water remained symptomless and R. solanacearum was reisolated from infected plants on TZC and identified with Immunostrips. All HR tests were negative. Infection of peanut, tobacco, and tomato and the results of the HR tests indicated that all isolates were Race 1 and no significant variation was noted between isolates. Acid was produced from the hexose alcohols: mannitol, sorbitol, and dulcitol; and the disaccharides: cellobiose, lactose, and maltose. This indicated that all isolates were biovar 3, the same as a known Race 1 strain from tobacco (MSU Plant Pathology teaching collection) (1). To assess relative distribution of R. solanacearum, 20 soil samples collected from potato fields in the vicinity of Baguineda, Kati, Koulikoro, and Sikasso were placed in pots (30 × 25 cm) under shade cloth at the IER Station in Sotuba and planted with 30-day-old tobacco plants. After 90 days, infected plants (35 to 100% infection) were found in all soils. Infected plants exhibited classical wilt symptoms and tested positive for R. solanacearum infections as confirmed by Immunostrip tests. Six of nine surface water samples taken near potato fields in Baguineda, Sikasso, Mopti, and Koulikoro tested positive for the presence of R. solanacearum by an Agdia Inc. enrichment kit and ELISA. A weed, Commelina forskalaei (Vahl), collected by Farako creek near Sikasso tested positive in the Immunostrip test even though no symptoms were obvious. No attempt was made to characterize the race, biovar, or phylotype of the soil, water, and weed isolates. To our knowledge, this is the first time that the race and biovar of R. solanacearum from Mali has been reported and the wide distribution of this pathogen in Malian soils and surface water has been demonstrated. It is significant that we did not detect Race 3 biovar 2, which is subject to quarantine and biosecurity regulations. References: (1) A. C. Hayward. J. Bacteriol. 27:265, 1964. (2) A. Kelman. Phytopathology 44:693, 1954. (3) J. Lozano and L. Sequeira. Phytopathology 60:833, 1970.

Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 157 ◽  
Author(s):  
Namisy ◽  
Chen ◽  
Prohens ◽  
Metwally ◽  
Elmahrouk ◽  
...  

Bacterial wilt, caused by Ralstonia solanacearum, is highly diverse and the identification of new sources of resistance for the incorporation of multiple and complementary resistance genes in the same cultivar is the best strategy for durable and stable resistance. The objective of this study was to screen seven accessions of cultivated eggplant (Solanum melongena L.) and 40 accessions from 12 wild relatives for resistance to two virulent R. solanacearum strains (Pss97 and Pss2016; phylotype I, race 1, biovar 3). The resistant or moderately resistant accessions were further evaluated with Pss97 in a second trial under high temperatures (and also with Pss2016 for S. anguivi accession VI050346). The resistant control EG203 was resistant to Pss97, but only moderately resistant to Pss2016. One accession of S. sisymbriifolium (SIS1) and two accessions of S. torvum (TOR2 and TOR3) were resistant or moderately resistant to Pss97 in both trials. Solanum anguivi VI050346, S. incanum accession MM577, and S. sisymbriifolium (SIS1 and SIS2) were resistant to Pss2016 in the first trial. However, S. anguivi VI050346 was susceptible in the second trial. These results are important for breeding resistant rootstocks and cultivars that can be used to manage this endemic disease.


2018 ◽  
Vol 10 (3) ◽  
pp. 886-893
Author(s):  
Kalavati Teli ◽  
H. M. Shweta ◽  
M. K. Prasanna Kumar ◽  
Bharath Kunduru ◽  
B. S. Chandra Shekar

Bacterial wilt caused by Ralstonia solanacearum, is the major threat to tomato cultivation in all tomato growing areas of Karnataka.  R. solanacearum was isolated from the infected host plants collected from different locations of southern Karnataka. The identity of the isolates was established using morphological, biochemical, and molecular analysis using species specific PCR primers. The race and biovar specificity of pathogen was determined through pathogenicity test on different host plants and the ability of isolates to use carbohydrates, respectively. Phylotype classification was done by phylotype specific multiplex PCR using phylotype specific primers. All the bacterial isolates showed the characteristic creamy white fluidal growth with pink centre on the Tetrazolium chloride medium. Further, the isolates amplified at 280 bp, which confirmed the identity of pathogen as Ralstonia solanacearum. Our results showed that all isolates belonged to Race 1 of the pathogen. Among different isolates obtained, four isolates each were identified to be Biovar III and Biovar IIIA, repectively, while two isolates were identified as Biovar IIIB. All the ten isolates were affiliated to Phylotype I of Ralstonia solanaceraum species complex. These findings may help in devising the management practices for bacterial wilt of tomato in southern Karnataka.


2007 ◽  
Vol 32 (3) ◽  
pp. 181-188 ◽  
Author(s):  
José R.P. Silveira ◽  
Valmir Duarte ◽  
Marcelo G. Moraes ◽  
Carlos A. Lopes ◽  
José M. Fernandes ◽  
...  

The objectives of this study were to evaluate the progress of Ralstonia solanacearum bacterial potato wilt biovar 2 (race 3) in 14 potato (Solanum tuberosum L.) cultivars or clones, the resistance of potato clone MB 03 (selected in Brasília, Brazil) to race 1 of R. solanacearum, and the occurrence of the pathogen in tubers harvested from asymptomatic potato plants. During the spring (September to the end of November in the southern hemisphere) of 1999 and 2000, 14 cultivars or clones were grown in a field naturally infested with R. solanacearum biovar 2, in Caxias do Sul, RS. The number of wilted potato plants was recorded each week and a disease progress curve plotted, the resistance of the potato genotypes to bacterial wilt being evaluated by determining the area under the curve. Various models were evaluated to fit the curves, with the logistic model being the best fit. At the end of each growing season tubers produced by asymptomatic plants were harvested and stored until budding and then tested for the presence of R. solanacearum. Cultivar Cruza 148 and clone MB 03 were the most resistant but both showed tubers with latent infections. The epidemiological implications of the incidence of R. solanacearum biovar 2 (race 3) in potato crops, as well as the resistance of certain genotypes that may harbor latent infections, are important aspects to be considered in the integrated management of bacterial wilt.


2019 ◽  
Vol 2 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Rachmad Saputra ◽  
Triwidodo Arwiyanto ◽  
Arif Wibowo

Streptomyces sp. bacteria have the potential to produce antibiotic compounds, which are one of the mechanisms that are widely used in biological control. However, in general, biological control mechanisms also occur through competition, cell wall degradation and induced resistance. This study was aimed to determine the physiological, biochemical and molecular characteristics of two isolates of Streptomyces sp. (S-4 and S16 isolates) isolated from the tomatoes roots, and to find out their ability to control Ralstonia solanacearum, which causes bacterial wilt disease on a wide range of hosts. The results showed both Streptomyces sp. isolates had several different physiological and biochemical characteristics and had a different ability to inhibit R. solanacearum in vitro. Streptomyces sp. S-16 isolate had a high similarity with Streptomyces diastaticus subsp. ardesiacus strain NRRL B-1773T based on the molecular identification results. Further research needs to be done to see the potential inhibition of the two Streptomyces isolates in inhibiting the development of bacterial wilt disease in tomato plants caused by R. solanacearum.


2018 ◽  
Vol 36 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Maurício Rossato ◽  
Thais R. Santiago ◽  
Carlos Alberto Lopes

ABSTRACT In Brazil, the bacterial pathogens Ralstonia solanacearum and R. pseudosolanacearum cause substantial losses by inducing bacterial wilt on several solanaceous crops; R. pseudosolanacearum is the main species associated with peppers (Capsicum sp.). To verify the bacterial wilt reaction on Capsicum peppers commercialized in the Federal District (DF), fruits of several genotypes within this genus were collected from six different fairs distributed in the satellite cities of Gama, Sobradinho and Guará. Seedlings with four true leaves derived from seeds extracted from such fruits were root inoculated with 108 CFU/mL with a representative isolate of R. pseudosolanacearum (race 1, biovar 3, phylotype I, sequevar 18). The evaluated species were: Capsicum frutescens (‘pimenta-malagueta’), Capsicum baccatum var. pendulum (‘pimenta-dedo-de-moça’) and C. chinense (‘pimenta-de-bode’ red and yellow, ‘pimenta-cumarí-do-Pará’, ‘pimenta-biquinho’, ‘pimenta-habanero’ and ‘pimenta-de-cheiro’). Not all species were found in all six fairs. The reaction to bacterial wilt was variable and species-dependent. From 26 evaluated genotypes, none presented an immune-like response, 10 were considered resistant and 16 susceptible based on wilt incidence (Scott-Knott, 5%). Four Capsicum baccatum accesses were positioned in the resistant group, whereas 14 out of 18 of C. chinense were susceptible. Capsicum frutescens showed variable reactions. These results contribute to indicate cultivation of specific groups of pepper according to the presence of the pathogen in the soil.


2016 ◽  
Vol 2 ◽  
pp. 22-26 ◽  
Author(s):  
Ram Devi Timila ◽  
Shrinkhala Manandhar

Bacterial wilt caused by Ralstonia solanacearum E.F. Smith is one of the destructive diseases of solanaceous vegetables specially tomato (Lycopersicon esculentum L.) and eggplant (Solanum melongena L.). Experiments were conducted to determine biovar types existing among the strains or isolates of Nepal and variation in virulence in some vegetables belonging to solanaceae family. A total of 39 isolates infecting tomato, eggplant, chilli and potato collected from different parts of Nepal were analyzed for biovar types on the basis of 3 disaccharides and 3 hexose alcohols oxidation test.  Experiments were conducted to determine variation in virulence or aggressiveness of some of the  isolates under  screen house conditions using three host differentials such as Pusa Ruby (susceptible), Bishesh (moderately resistant) and Srijana (resistant) tomato cultivars. Of the 39 isolates, 23 were biovar III, three biovar II, three biovar IV, and one was biovar I. Nine isolates could not be differentiated into any of the five biovars. For breeding and epidemiological purposes it is very important to analyze the variability of aggressiveness. A total of 5 isolates collected from different places were included in the test. Isolates from Bhaktapur was found the most virulent causing wilt in the variety Bishesh (moderately resistant). Other isolates had the negative impact with zero wilt on the differentials used. Isolates from Jungekhola of Dhading district did not induce wilt even on susceptible variety (Pusa Ruby), but exhibited only senescence reaction. The result indicated that there is some slight variation among the isolates tested. Some effective management tactics might be needed in those locations where highly aggressive or virulent strain of bacterial wilt is prevalent, because resistant variety may not be stable in such locations.


2017 ◽  
Vol 5 (23) ◽  
Author(s):  
Adam Kotorashvili ◽  
Galina Meparishvili ◽  
Giorgi Gogoladze ◽  
Nato Kotaria ◽  
Maka Muradashvili ◽  
...  

ABSTRACT Ralstonia solanacearum, the causative agent of bacterial wilt, is a devastating bacterial plant pathogen with a wide range of hosts. We report here the first draft genome sequences for three strains of Ralstonia solanacearum isolated from infected potato, tomato, and pepper plants in Georgia.


2021 ◽  
Vol 39 (4) ◽  
pp. 411-416
Author(s):  
Carlos A Lopes ◽  
Agnaldo DF Carvalho ◽  
Arione S Pereira ◽  
Fernanda Q Azevedo ◽  
Caroline M Castro ◽  
...  

ABSTRACT Bacterial wilt (BW), or brown rot, caused by the soil and seed borne bacterium Ralstonia solanacearum, is one of the most devastating diseases of potatoes cultivated in warmer regions of the world. There are no potato cultivars with a desirable level of BW resistance, although it has been recognized that resistance can be an outstanding component for disease management. However, the sources of resistance available lack agronomic traits required by potato growers, therefore being of little interest to breeders. The objective of this work was to evaluate the performance of 11 clones selected for BW resistance and improved for tuber traits upon selection in the last two decades. The clones under test were compared with susceptible and resistant clones and cultivars, in a completely randomized blocks design with three replications of single lines of 10 plants, in a field naturally infested with race 1, biovar 1, phylotype II of R. solanacearum. BW incidence was assessed 60-70 days after planting and total tuber yield in each plot was recorded 110 days after planting. All the evaluated clones presented higher levels of resistance to BW compared with the commercial varieties, not differing from the resistant, not commercial, controls. In a next step, these clones will be characterized for other desirable traits and those which combine high level of resistance and commercial characteristics will be recommended for breeders for enriching the genotypic background in the search for commercial varieties. We also confirmed that the cultivar BRSIPR Bel displays an intermediate level of resistance, what makes it an interesting genitor for its good agronomic characteristics. The findings of this work demonstrate that the improved potato clones selected under tropical conditions in the Embrapa’s pre-breeding project possess high and stable levels of resistance to bacterial wilt, being a valuable resource for breeders.


2021 ◽  
Author(s):  
Ebrahim Osdaghi

Abstract Ralstonia solanacearum is included in the A2 (high risk) list of quarantine organisms by the European and Mediterranean Plant Protection Organization (EPPO). EPPO Code for R. solanacearum is RALSSO, while the phytosanitary categorization of the species in EPPO A2 list is no.58, EU: I/A2 (EPPO, 2018). Bacterial wilt disease was first reported in southern USA in the late nineteenth century on tomato plants (Smith, 1896). Infected plant materials (e.g. potato tubers) transmit the pathogen over long distances; hence, quarantine inspections and plant sanitary practices are the cornerstone of disease management (EPPO, 2018). R. solanacearum strains in the race 3 group are a select agent under the US Agricultural Bioterrorism Protection Act of 2002 (USDA, 2005). Peculiarly, the organism, if not yet already present in North America in pelargonium (Strider et al., 1981), was introduced with cuttings of this host by American companies producing these cuttings for their markets in countries like Kenya and Guatemala (Norman et al., 1999, 2009; Kim et al., 2002; Williamson et al., 2002; O'Hern, 2004). A similar situation led to introductions of the pathogen from Kenya into some northern European nurseries. Once the source (contaminated surface water) was recognized and proper control measures (use of deep soil water, disinfection of cutting producing premises and replacement of mother stock), the problem was solved and the disease in greenhouses eradicated (Janse et al., 2004). Similarly race 1 has been introduced into greenhouses with ornamental plants (rhizomes, cuttings or fully grown plants) such as Epipremnum, Anthurium, Curcuma spp. and Begonia eliator from tropical areas (Norman and Yuen, 1998, 1999; Janse et al., 2006; Janse, 2012). Introduction can and did occur from Costa Rica and the Caribbean, Indonesia, Thailand and South Africa. However, this idea of placing pathogens on bioterrorist list for unclear and perhaps industry-driven reasons and its effects, is strongly opposed in a recent publication from leading phytobacteriologists. This is because R. solanacearum is an endemic pathogen, causing endemic disease in most parts of its geographic occurrence, moreover normal quarantine regulations are already in place where the disease is not present or only sporadically and are thought to be more efficient and less damaging to trade and research than placing this pathogen on select agent lists and treating it as such (Young et al., 2008). Peculiarly, it has been used in the control of a real invasive species, the weed kahili ginger (Hedychium gardenarium) in tropical forests in Hawaii. This is not without risks because strains occurring on this weed host were thought to be non-virulent, but later appeared to be virulent on many edible and ornamental ginger species as well (Anderson and Gardner, 1999; Paret et al., 2008). Another threat for these countries could be strains belonging to race 1, biovar 1 (phylotype I) that have already been reported from field-grown potatoes in Portugal (Cruz et al., 2008).


Sign in / Sign up

Export Citation Format

Share Document