Peracetic acid Activity on Biofilm Formed by Escherichia coli Isolated from an Industrial Water System

Author(s):  
Afsaneh Farjami ◽  
Mohammad‐sadegh Hatami ◽  
Mohammadreza Siahi‐Shadbad ◽  
Farzaneh Lotfipour
2021 ◽  
pp. 117403
Author(s):  
Sanjana Balachandran ◽  
Livia V.C. Charamba ◽  
Kyriakos Manoli ◽  
Popi Karaolia ◽  
Serena Caucci ◽  
...  

2016 ◽  
Vol 79 (4) ◽  
pp. 561-568 ◽  
Author(s):  
NORASAK KALCHAYANAND ◽  
MOHAMMAD KOOHMARAIE ◽  
TOMMY L. WHEELER

ABSTRACT Several antimicrobial compounds are in commercial meat processing plants for pathogen control on beef carcasses. However, the efficacy of the method used is influenced by a number of factors, such as spray pressure, temperature, type of chemical and concentration, exposure time, method of application, equipment design, and the stage in the process that the method is applied. The objective of this study was to evaluate effectiveness of time of exposure of various antimicrobial compounds against nine strains of Shiga toxin–producing Escherichia coli (STEC) and four strains of Salmonella in aqueous antimicrobial solutions with and without organic matter. Non-O157 STEC, STEC O157:H7, and Salmonella were exposed to the following aqueous antimicrobial solutions with or without beef purge for 15, 30, 60, 120, 300, 600, and 1,800 s: (i) 2.5% lactic acid, (ii) 4.0% lactic acid, (iii) 2.5% Beefxide, (iv) 1% Aftec 3000, (v) 200 ppm of peracetic acid, (vi) 300 ppm of hypobromous acid, and (vii) water as a control. In general, increasing exposure time to antimicrobial compounds significantly (P ≤ 0.05) increased the effectiveness against pathogens tested. In aqueous antimicrobial solutions without organic matter, both peracetic acid and hypobromous acid were the most effective in inactivating populations of STEC and Salmonella, providing at least 5.0-log reductions with exposure for 15 s. However, in antimicrobials containing organic matter, 4.0% lactic acid was the most effective compound in reducing levels of STEC and Salmonella, providing 2- to 3-log reductions with exposure for 15 s. The results of this study indicated that organic matter and exposure time influenced the efficacy of antimicrobial compounds against pathogens, especially with oxidizer compounds. These factors should be considered when choosing an antimicrobial compound for an intervention.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2014 ◽  
Vol 955-959 ◽  
pp. 3343-3346
Author(s):  
Jing Chen ◽  
Da Wei Yan

More reasonable management for water resources use may be critical to survive water crisis and realize sustainable development of urban-water system. This work attempts to set up a assessment model for regional industrial water utilization structure based on synergetics theory and grey method. In this model, both economic benefit and environmental effect are considered.


Chemosphere ◽  
2016 ◽  
Vol 153 ◽  
pp. 521-527 ◽  
Author(s):  
Danielle M. West ◽  
Qihua Wu ◽  
Ariel Donovan ◽  
Honglan Shi ◽  
Yinfa Ma ◽  
...  

2006 ◽  
Vol 161 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Zohreh Tamanai-Shacoori ◽  
Anne Jolivet-Gougeon ◽  
Christian Ménard ◽  
Martine Bonnaure-Mallet ◽  
Michel Cormier

Sign in / Sign up

Export Citation Format

Share Document