scholarly journals Brain transcriptome analysis reveals gene expression differences associated with dispersal behaviour between range‐front and range‐core populations of invasive cane toads in Australia

2022 ◽  
Author(s):  
Boris Yagound ◽  
Andrea J. West ◽  
Mark F. Richardson ◽  
Daniel Selechnik ◽  
Richard Shine ◽  
...  
2021 ◽  
Author(s):  
Boris Yagound ◽  
Andrea J West ◽  
Mark F Richardson ◽  
Daniel Selechnik ◽  
Richard Shine ◽  
...  

Understanding the mechanisms underlying rapid adaptation of invasive species in novel environments is key to improving our ability to manage these species. Many invaders demonstrate rapid evolution of behavioural traits involved in range expansion such as locomotor activity, exploration and risk-taking. However, the molecular mechanisms that underpin these changes are poorly understood. In 86 years, invasive cane toads (Rhinella marina) in Australia have drastically expanded their geographic range westward from coastal Queensland to Western Australia. During their range expansion, toads have undergone extensive phenotypic changes, particularly in behaviours that enhance the toads' dispersal ability. Common-garden experiments have shown that some changes in behavioural traits related to dispersal are heritable. However, genetic diversity is greatly reduced across the invasive range due to a strong founder effect, and the genetic basis underlying dispersal-related behavioural changes remains unknown. Here we used RNA-seq to compare the brain transcriptomes of toads from the Hawai'ian source population, as well as three distinct populations from across the Australian invasive range. We found markedly different gene expression profiles between the source population and Australian toads. By contrast, cane toads from across the Australian invasive range had very similar transcriptomic profiles. Yet, key genes with functions putatively related to dispersal behaviour showed differential expression between range-core and range-front populations. These genes could play an important role in the behavioural changes characteristic of range expansion in Australian cane toads.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tiziano Flati ◽  
Silvia Gioiosa ◽  
Giovanni Chillemi ◽  
Andrea Mele ◽  
Alberto Oliverio ◽  
...  

AbstractStressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218381 ◽  
Author(s):  
Rasmieh Hamid ◽  
Hassan Marashi ◽  
Rukam S. Tomar ◽  
Saeid Malekzadeh Shafaroudi ◽  
Pritesh H. Sabara

Aquaculture ◽  
2022 ◽  
Vol 547 ◽  
pp. 737434
Author(s):  
Monica Janeth Cabrera-Stevens ◽  
Arturo Sánchez-Paz ◽  
Fernando Mendoza-Cano ◽  
Cristina Escobedo-Fregoso ◽  
Trinidad Encinas-García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document