scholarly journals Simultaneous resting-state functional MRI and electroencephalography recordings of functional connectivity in patients with schizophrenia

2017 ◽  
Vol 71 (4) ◽  
pp. 262-270 ◽  
Author(s):  
Eiji Kirino ◽  
Shoji Tanaka ◽  
Mayuko Fukuta ◽  
Rie Inami ◽  
Heii Arai ◽  
...  
2015 ◽  
Vol 9 ◽  
Author(s):  
Wen-Ju Pan ◽  
Jacob C. W. Billings ◽  
Joshua K. Grooms ◽  
Sadia Shakil ◽  
Shella D. Keilholz

2018 ◽  
Vol 28 (5) ◽  
pp. 589-602 ◽  
Author(s):  
Giulia Maria Giordano ◽  
Mario Stanziano ◽  
Michele Papa ◽  
Armida Mucci ◽  
Anna Prinster ◽  
...  

2021 ◽  
Author(s):  
Tomokazu Tsurugizawa ◽  
Daisuke Yoshimaru

AbstractA few studies have compared the static functional connectivity between awake and anaesthetized states in rodents by resting-state fMRI. However, impact of anaesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anaesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under anaesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric connections were key connections for anaesthetized condition from awake. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anaesthesia. These results indicate that typical anaesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.HighlightsResting-state fMRI was compared between awake and anaesthetized in the same mice.Anaesthesia induced a widespread decrease of static functional connectivity.Anaesthesia strengthened local connections within the cortex.fALFF in the thalamus was decreased by anaesthesia.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicole Steinhardt ◽  
Ramana Vishnubhotla ◽  
Yi Zhao ◽  
David M. Haas ◽  
Gregory M. Sokol ◽  
...  

Purpose: Infants of mothers with opioid and substance use can present with postnatal withdrawal symptoms and are at risk of poor neurodevelopmental outcomes in later childhood. Identifying methods to evaluate the consequences of substance exposure on the developing brain can help initiate proactive therapies to improve outcomes for opioid-exposed neonates. Additionally, early brain imaging in infancy has the potential to identify early brain developmental alterations that could prognosticate neurodevelopmental outcomes in these children. In this study, we aim to identify differences in global brain network connectivity in infants with prenatal opioid exposure compared to healthy control infants, using resting-state functional MRI performed at less than 2 months completed gestational age.   Materials and Methods: In this prospective, IRB-approved study, we recruited 20 infants with prenatal opioid exposure and 20 healthy, opioid naïve infants. Anatomic imaging and resting-state functional MRI were performed at less than 48 weeks corrected gestational age, and rs-fMRI images were co-registered to the UNC neonate brain template and 90 anatomic atlas-labelled regions. Covariate Assisted Principal (CAP) regression was performed to identify brain network functional connectivity that was significantly different among infants with prenatal opioid exposure compared to healthy neonates.   Results: Of the 5 significantly different CAP components identified, the most distinct component (CAP5, p= 3.86 x 10-6) spanned several brain regions, including the right inferior temporal gyrus, bilateral Hesch’s gyrus, left thalamus, left supramarginal gyrus, left inferior parietal lobule, left superior parietal gyrus, right anterior cingulate gyrus, right gyrus rectus, left supplementary motor area, and left pars triangularis. Functional connectivity in this network was lower in the infants with prenatal opioid exposure compared to non-opioid exposed infants.   Conclusion: This study demonstrates global network alterations in infants with prenatal opioid exposure compared to non-opioid exposed infants. Future studies should be aimed at identifying clinical significance of this altered connectivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Su ◽  
Rui Zhao ◽  
ShuoWen Wang ◽  
HaoYang Tu ◽  
Xing Guo ◽  
...  

Currently, strategies to diagnose patients and predict neurological recovery in cervical spondylotic myelopathy (CSM) using MR images of the cervical spine are urgently required. In light of this, this study aimed at exploring potential preoperative brain biomarkers that can be used to diagnose and predict neurological recovery in CSM patients using functional connectivity (FC) analysis of a resting-state functional MRI (rs-fMRI) data. Two independent datasets, including total of 53 patients with CSM and 47 age- and sex-matched healthy controls (HCs), underwent the preoperative rs-fMRI procedure. The FC was calculated from the automated anatomical labeling (AAL) template and used as features for machine learning analysis. After that, three analyses were used, namely, the classification of CSM patients from healthy adults using the support vector machine (SVM) within and across datasets, the prediction of preoperative neurological function in CSM patients via support vector regression (SVR) within and across datasets, and the prediction of neurological recovery in CSM patients via SVR within and across datasets. The results showed that CSM patients could be successfully identified from HCs with high classification accuracies (84.2% for dataset 1, 95.2% for dataset 2, and 73.0% for cross-site validation). Furthermore, the rs-FC combined with SVR could successfully predict the neurological recovery in CSM patients. Additionally, our results from cross-site validation analyses exhibited good reproducibility and generalization across the two datasets. Therefore, our findings provide preliminary evidence toward the development of novel strategies to predict neurological recovery in CSM patients using rs-fMRI and machine learning technique.


2018 ◽  
Vol 77 (4) ◽  
pp. 165-175 ◽  
Author(s):  
Eiji Kirino ◽  
Shoji Tanaka ◽  
Mayuko Fukuta ◽  
Rie Inami ◽  
Reiichi Inoue ◽  
...  

2020 ◽  
Author(s):  
Dillan J. Newbold ◽  
Evan M. Gordon ◽  
Timothy O. Laumann ◽  
Nicole A. Seider ◽  
David F. Montez ◽  
...  

AbstractWhole-brain resting-state functional MRI (rs-fMRI) during two weeks of limb constraint revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula (1). Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.SignificanceMany studies have examined plasticity in the primary somatosensory and motor cortex during disuse, but little is known about how disuse impacts the brain outside of primary cortical areas. We leveraged the whole-brain coverage of resting-state functional MRI (rs-fMRI) to discover that disuse drives plasticity of distant executive control regions in the cingulo-opercular network (CON). Two complementary analyses, pulse censoring and pulse addition, demonstrated that increased functional connectivity between the CON and disused motor regions was driven by large, spontaneous pulses of activity in the CON and disused motor regions. These results point to a previously unknown role for the CON in supporting motor plasticity and reveal spontaneous activity pulses as a novel mechanism for reorganizing the brain’s functional connections.


Sign in / Sign up

Export Citation Format

Share Document