Civil Society in an Age of Environmental Accountability: How Local Environmental Nongovernmental Organizations Reduce U.S. Power Plants’ Carbon Dioxide Emissions

2016 ◽  
Vol 32 (1) ◽  
pp. 94-115 ◽  
Author(s):  
Don Grant ◽  
Ion Bogdan Vasi
Author(s):  
Michael O’Sullivan ◽  
Michael Gravatt ◽  
Joris Popineau ◽  
John O’Sullivan ◽  
Warren Mannington ◽  
...  

Author(s):  
Jongsup Hong ◽  
Ahmed F. Ghoniem ◽  
Randall Field ◽  
Marco Gazzino

Oxy-fuel combustion coal-fired power plants can achieve significant reduction in carbon dioxide emissions, but at the cost of lowering their efficiency. Research and development are conducted to reduce the efficiency penalty and to improve their reliability. High-pressure oxy-fuel combustion has been shown to improve the overall performance by recuperating more of the fuel enthalpy into the power cycle. In our previous papers, we demonstrated how pressurized oxy-fuel combustion indeed achieves higher net efficiency than that of conventional atmospheric oxy-fuel power cycles. The system utilizes a cryogenic air separation unit, a carbon dioxide purification/compression unit, and flue gas recirculation system, adding to its cost. In this study, we perform a techno-economic feasibility study of pressurized oxy-fuel combustion power systems. A number of reports and papers have been used to develop reliable models which can predict the costs of power plant components, its operation, and carbon dioxide capture specific systems, etc. We evaluate different metrics including capital investments, cost of electricity, and CO2 avoidance costs. Based on our cost analysis, we show that the pressurized oxy-fuel power system is an effective solution in comparison to other carbon dioxide capture technologies. The higher heat recovery displaces some of the regeneration components of the feedwater system. Moreover, pressurized operating conditions lead to reduction in the size of several other critical components. Sensitivity analysis with respect to important parameters such as coal price and plant capacity is performed. The analysis suggests a guideline to operate pressurized oxy-fuel combustion power plants in a more cost-effective way.


2022 ◽  
Vol 1 (15) ◽  
pp. 71-75
Author(s):  
Dmitriy Kononov

The strategy of low-carbon development of the economy and energy of Russia provides for the introduction of a fee (tax) for carbon dioxide emissions by power plants. This will seriously affect their prospective structure and lead to an increase in electricity prices. The expected neg-ative consequences for national and energy security are great. But serious and multilateral research is needed to properly assess these strategic threats


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2942 ◽  
Author(s):  
Karol Tucki ◽  
Olga Orynycz ◽  
Antoni Świć ◽  
Mateusz Mitoraj-Wojtanek

The article analyzes the dynamics of the development of the electromobility sector in Poland in the context of the European Union and due to the economic situation and development of the electromobility sector in the contexts of Switzerland and Norway. On the basis of obtained data, a forecast was made which foresees the most likely outlook of the electric car market in the coming years. The forecast was made using the creeping trend method, and extended up to 2030. As part of the analysis of the effect of the impact of electromobility, an original method was proposed for calculating the primary energy factor (PEF) primary energy ratio in the European Union and in its individual countries, which illustrates the conversion efficiency of primary energy into electricity and the overall efficiency of the power system. The original method was also verified, referring to the methods proposed by the Fraunhofer-Institut. On the basis of all previous actions and analyses, an assessment was made of the impact of the development of the electromobility sector on air quality in the countries studied. Carbon dioxide tank-to-wheels emission reductions which result from the conversion of the car fleet from conventional vehicles to electric motors were then calculated. In addition to reducing carbon dioxide emissions, other pollutant emissions were also calculated, such as carbon monoxide (CO), nitrogen oxides (NOx) and particulate matter (PM). The increase in the demand for electricity resulting from the needs of electric vehicles was also estimated. On this basis, and also on the basis of previously calculated primary energy coefficients, the emission reduction values have been adjusted for additional emissions resulting from the generation of electricity in power plants.


2020 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Su-Won Son ◽  
Jong-Chan Yoon ◽  
Jin-Man Kim

Global warming is becoming worse owing to carbon dioxide emissions around the world, and eco-friendly energy for reducing carbon dioxide emissions is gaining importance. Wind power plants are the most representative of the environmentally friendly energy power plants built in the ocean. The fatigue loading and long-term dynamic behavior of offshore soils are important considerations in the construction of structures such as wind turbines in the ocean as they are subject to long-term loads such as wind and wave loads. A design graph presents the short- and long-term behaviors of soil. Several laboratory tests are typically conducted to create design graphs. In this study, a cyclic simple shear test conducted at various confining pressures and relative densities is presented in design graphs. The authors analyzed the sensitivity of the relative density and the confining pressure, and proposed a drawing technique to easily create two-dimensional design graphs. The authors found that the effect of the relative density on the design failure curve was higher compared with that of the confining pressure. The elliptic equation graph achieved the best match to the design failure curve, and the design failure curve drawing technique was summarized in five stages. In addition, the normalized cyclic stress ratio graph to distinguish safety or failure was presented.


2020 ◽  
Vol 61 (2) ◽  
pp. 57-67
Author(s):  
Shahla Firiddun Taghiyevа ◽  

Carbon dioxide is the main source of the greenhouse effect, causing global warming and climate change. In this regard, in order to avoid more dangerous consequences, the United Nations Conference on Climate Change has emphasized the need to reduce carbon dioxide emissions by at least half their current value by 2050, aiming to limit the global increase in average temperature to a maximum of 2 °C. Carbon dioxide is emitted mainly from power plants (e.g., coal-based) and vehicles, and other industrial sources contribute to an increase in CO2 emissions. In recent years, the scientific community has begun to view CO2 not as a costly waste, but mainly as a potential carbon alternative to fossils. Therefore, future prospects for reducing carbon dioxide emissions will concern not only the development of more efficient carbon dioxide storage technologies, but also the development of new strategies for CO2 processing in the energetical direction and in chemical intermediate products. In this regard, the conversion of CO2 to methanol has received increased attention, since methanol (CH3OH) is a key raw material for industrial chemicals, which can later be converted to high molecular weight alternative liquid fuels. The review considers works published over the past 10 years on the heterogeneous catalytic conversion of CO2 to methanol. The characteristics of the used catalysts, reaction mechanisms, key technologies and problems of industrial use, prospects for the application of heterogeneous catalytic conversion of CO2 to hydrocarbons are discussed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hashmi SAM ◽  

The main idea of this research paper is to provide an innovative way of capturing carbon dioxide emissions from a coal powered power plant. This research paper discusses the design and modeling of a carbon capturing membrane which is being used in an IGCC power plant to capture carbon dioxide from its exhaust gases. The modeling and design of the membrane is done using CFD software namely Ansys workbench. The design and modeling is done using two simulations, one describes the design and structure and the second one demonstrates the working mechanism of the membrane. This paper also briefly discusses IGCC which is environmentally benign compared to traditional pulverized coal-fired power plants, and economically feasible compared to the Natural Gas Combine Cycle (NGCC). IGCC power plant is more diverse and offers flexibility in fuel utility. This paper also incorporates a PFD of integrated gasification power plant with the carbon capturing membrane unit integrated in it. Index Terms: Integrated gasification combined cycle power plant, Carbon capture and storage, Gas permeating membrane, CFD based design of gas permeating membrane.


2007 ◽  
Vol 129 (04) ◽  
pp. 38-39
Author(s):  
Jeffrey Winters

Over the time, oil companies, utilities, and the Bush administration have come around to the idea that global warming is real and a consortium of USA. Companies including PG&E, Duke Energy, and Alcoa- has reportedly asked for congressional action to control carbon emissions. The chart presented in the article shows in detail the carbon dioxide emitted across the entire US economy, as determined by a draft report of the USA. Environmental Protection Agency released in February. Each square represents 10 million tons of carbon dioxide emissions and there are 726 of them. A quick glance shows that massive amounts of carbon dioxide are produced from the burning of coal in thermal power plants and the burning of gasoline and diesel fuel in the engines of cars and trucks. Switzerland, Sweden, Japan, and France are considered as models of Western society. They owe their position to a few factors, some of which may be emulated, and some of which are geographical accidents.


Sign in / Sign up

Export Citation Format

Share Document