scholarly journals Genomic characterization of multidrug‐resistant ESBL‐producing Escherichia coli ST58 causing fatal colibacillosis in critically endangered Brazilian merganser ( Mergus octosetaceus )

Author(s):  
Danny Fuentes‐Castillo ◽  
Pedro Enrique Navas‐Suárez ◽  
Maria Fernanda Gondim ◽  
Fernanda Esposito ◽  
Carlos Sacristán ◽  
...  
Pedosphere ◽  
2022 ◽  
Vol 32 (3) ◽  
pp. 495-502
Author(s):  
João Pedro Rueda FURLAN ◽  
Inara Fernanda Lage GALLO ◽  
Eliana Guedes STEHLING

2020 ◽  
Author(s):  
Danny Fuentes Castillo ◽  
Pedro Enrique Navas Suarez ◽  
Maria Gondim ◽  
Fernanda Esposito ◽  
Carlos Sacrist n ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Rodrigo Carvalho ◽  
Flavia Aburjaile ◽  
Marcus Canario ◽  
Andréa M. A. Nascimento ◽  
Edmar Chartone-Souza ◽  
...  

The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain.


Author(s):  
Jérôme Ambroise ◽  
Elmostafa Benaissa ◽  
Léonid M. Irenge ◽  
EL Mehdi Belouad ◽  
Bertrand Bearzatto ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Silpak Biswas ◽  
Mohammed Elbediwi ◽  
Guimin Gu ◽  
Min Yue

Colistin is considered to be a ‘last-resort’ antimicrobial for the treatment of multidrug-resistant Gram-negative bacterial infections. Identification of Enterobacteriaceae, carrying the transferable colistin resistance gene mcr-1, has recently provoked a global health concern. This report presents the first detection of a hydrogen sulfide (H2S)-producing Escherichia coli variant isolated from a human in China, with multidrug resistance (MDR) properties, including colistin resistance by the mcr-1 gene, which could have great implications for the treatment of human infections.


2020 ◽  
Vol 17 (3) ◽  
pp. 0710
Author(s):  
Md Fazlul Karim Khan ◽  
Shah Samiur Rashid

A significant increase in the incidence of non-O157 verotoxigenic Escherichia coli (VTEC) infections have become a serious health issues, and this situation is worsening due to the dissemination of plasmid mediated multidrug-resistant microorganisms worldwide. This study aims to investigate the presence of plasmid-mediated verotoxin gene in non-O157 E. coli. Standard microbiological techniques identified a total of 137 E. coli isolates. The plasmid was detected by Perfectprep Plasmid Mini preparation kit. These isolates were subjected to disk diffusion assay, and plasmid curing with ethidium bromide treatment. The plasmid containing isolates were subjected to a polymerase chain reaction (PCR) for investigating the presence of plasmid mediated verotoxin gene (VT1 and VT2) in non-O157 E. coli. Among the 137 E. coli isolates, 49 isolates were non-O157 E. coli while 29 (59.1%) isolates were verotoxin producing non-O157 serotypes and 26 non-O157 VTEC isolates possessed plasmids. Certain isolates harboured single sized plasmid while others had multiple plasmids with different size varied from 1.8kb to 7.6kb. A plasmid containing all (100%) the isolates was multidrug-resistant. Eight isolates changed their susceptibility patterns while three isolates were found to lose plasmid after post plasmid curing treatment and the rest of the isolates (15) remained constant. Different PCR sets characterized 3 plasmid-mediated verotoxins producing non-O157 E. coli. This current study demonstrated the occurrence of plasmid mediated verotoxin gene in non-O157 E. coli. To the best of our knowledge, this is the first report in the global literature on plasmid-mediated verotoxin gene in non-O157 E. coli. Timely diagnosis and surveillance of VTEC infections should prioritize to stop or slow down the virulence gene for dissemination by plasmid-mediated gene transfer amongst the same bacteria or other species.


2020 ◽  
Author(s):  
Tingyan Zhang ◽  
Yanfeng Lin ◽  
Zhonghong Li ◽  
Xiong Liu ◽  
Jinhui Li ◽  
...  

Abstract Background: The emergence of multi-drug resistant Citrobacter freundii poses daunting challenges to the treatment of clinical infections. The purpose of this study was to characterize the genome of a C. freundii strain with an IncX3 plasmid encoding both the blaNDM-1 and blaSHV-12 genes.Methods: Strain ZT01-0079 was isolated from a clinical urine sample. The Vitek2 system was used for identification and antimicrobial susceptibility testing. The presence of blaNDM-1 was detected by PCR and sequencing. Conjugation experiments and Southern blotting were performed to determine the transferability of the blaNDM-1- carrying plasmid. Nanopore and Illumina sequencing were performed to better understand the genomic characteristics of the strain.Results: Strain ZT01-0079 was identified as C. freundii, and the coexistence of blaNDM-1 and multiple drug resistance genes was confirmed. Electrophoresis and Southern blotting showed that blaNDM-1 was located on a ~53kb IncX3 plasmid. The NDM-1-encoding plasmid was successfully transferred at a frequency of 1.68×10−3. Both blaNDM-1 and blaSHV-12 were located on the self-transferable IncX3 plasmid.Conclusion: The rapid spread of the IncX3 plasmid highlights the importance of continuous monitoring of the prevalence of NDM-1-encoding Enterobacteriaceae. Mutations of existing carbapenem resistance genes will bring formidable challenges to clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document