scholarly journals Genomic characterization of Escherichia coli LCT-EC001, an extremely multidrug-resistant strain with an amazing number of resistance genes

Gut Pathogens ◽  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuelin Zhang ◽  
Saisong Xiao ◽  
Xuege Jiang ◽  
Yun Li ◽  
Zhongyi Fan ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Rodrigo Carvalho ◽  
Flavia Aburjaile ◽  
Marcus Canario ◽  
Andréa M. A. Nascimento ◽  
Edmar Chartone-Souza ◽  
...  

The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain.


2020 ◽  
Author(s):  
Tingyan Zhang ◽  
Yanfeng Lin ◽  
Zhonghong Li ◽  
Xiong Liu ◽  
Jinhui Li ◽  
...  

Abstract Background: The emergence of multi-drug resistant Citrobacter freundii poses daunting challenges to the treatment of clinical infections. The purpose of this study was to characterize the genome of a C. freundii strain with an IncX3 plasmid encoding both the blaNDM-1 and blaSHV-12 genes.Methods: Strain ZT01-0079 was isolated from a clinical urine sample. The Vitek2 system was used for identification and antimicrobial susceptibility testing. The presence of blaNDM-1 was detected by PCR and sequencing. Conjugation experiments and Southern blotting were performed to determine the transferability of the blaNDM-1- carrying plasmid. Nanopore and Illumina sequencing were performed to better understand the genomic characteristics of the strain.Results: Strain ZT01-0079 was identified as C. freundii, and the coexistence of blaNDM-1 and multiple drug resistance genes was confirmed. Electrophoresis and Southern blotting showed that blaNDM-1 was located on a ~53kb IncX3 plasmid. The NDM-1-encoding plasmid was successfully transferred at a frequency of 1.68×10−3. Both blaNDM-1 and blaSHV-12 were located on the self-transferable IncX3 plasmid.Conclusion: The rapid spread of the IncX3 plasmid highlights the importance of continuous monitoring of the prevalence of NDM-1-encoding Enterobacteriaceae. Mutations of existing carbapenem resistance genes will bring formidable challenges to clinical treatment.


2019 ◽  
Vol 19 ◽  
pp. 311-312
Author(s):  
José Antonio Magaña-Lizárraga ◽  
Yesmi Patricia Ahumada-Santos ◽  
Jesús Ricardo Parra-Unda ◽  
Magdalena de Jesús Uribe-Beltrán ◽  
Ines Fernando Vega-López ◽  
...  

Pedosphere ◽  
2022 ◽  
Vol 32 (3) ◽  
pp. 495-502
Author(s):  
João Pedro Rueda FURLAN ◽  
Inara Fernanda Lage GALLO ◽  
Eliana Guedes STEHLING

Sign in / Sign up

Export Citation Format

Share Document