scholarly journals The TCP 4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana

2017 ◽  
Vol 93 (2) ◽  
pp. 259-269 ◽  
Author(s):  
Batthula Vijaya Lakshmi Vadde ◽  
Krishna Reddy Challa ◽  
Utpal Nath

2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.



2021 ◽  
pp. 1-12
Author(s):  
Takaharu Katagiri ◽  
Hideto Kameda ◽  
Hiroyasu Nakano ◽  
Soh Yamazaki


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208343 ◽  
Author(s):  
Lucy Cooper ◽  
Lauren Hailes ◽  
Amania Sheikh ◽  
Colby Zaph ◽  
Gabrielle T. Belz ◽  
...  


2006 ◽  
Vol 26 (3) ◽  
pp. 1109-1123 ◽  
Author(s):  
Daniela S. Bassères ◽  
Elena Levantini ◽  
Hongbin Ji ◽  
Stefano Monti ◽  
Shannon Elf ◽  
...  

ABSTRACT The leucine zipper family transcription factor CCAAT enhancer binding protein alpha (C/EBPα) inhibits proliferation and promotes differentiation in various cell types. In this study, we show, using a lung-specific conditional mouse model of C/EBPα deletion, that loss of C/EBPα in the respiratory epithelium leads to respiratory failure at birth due to an arrest in the type II alveolar cell differentiation program. This differentiation arrest results in the lack of type I alveolar cells and differentiated surfactant-secreting type II alveolar cells. In addition to showing a block in type II cell differentiation, the neonatal lungs display increased numbers of proliferating cells and decreased numbers of apoptotic cells, leading to epithelial expansion and loss of airspace. Consistent with the phenotype observed, genes associated with alveolar maturation, survival, and proliferation were differentially expressed. Taken together, these results identify C/EBPα as a master regulator of airway epithelial maturation and suggest that the loss of C/EBPα could also be an important event in the multistep process of lung tumorigenesis. Furthermore, this study indicates that exploring the C/EBPα pathway might have therapeutic benefits for patients with respiratory distress syndromes.



Sign in / Sign up

Export Citation Format

Share Document