scholarly journals OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling

2018 ◽  
Vol 93 (3) ◽  
pp. 489-501 ◽  
Author(s):  
Chao Yang ◽  
Yamei Ma ◽  
Yong He ◽  
Zhihong Tian ◽  
Jianxiong Li

2021 ◽  
Vol 118 (11) ◽  
pp. e2004384118
Author(s):  
Xiaojian Xia ◽  
Han Dong ◽  
Yanling Yin ◽  
Xuewei Song ◽  
Xiaohua Gu ◽  
...  

The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.





2020 ◽  
Author(s):  
Dandan Dou ◽  
Shengbo Han ◽  
Lixia Ku ◽  
Huafeng Liu ◽  
Huihui Su ◽  
...  

AbstractLeaf angle in cereals is an important agronomic trait contributing to plant architecture and grain yield by determining the plant compactness. Although ZmCLA4 was identified to shape plant architecture by affecting leaf angle, the detailed regulatory mechanism of ZmCLA4 in maize remains unclear. ZmCLA4 was identified as a transcriptional repressor using the Gal4-LexA/UAS system and transactivation analysis in yeast. The DNA affinity purification (DAP)-seq assay showed that ZmCLA4 not only acts as a repressor containing the EAR motif (CACCGGAC), but was also found to have two new motifs, CCGARGS and CDTCNTC. On analyzing the ZmCLA4-bound targeted genes, we found that ZmCLA4, as a cross node of multiple plant hormone-mediated pathways, directly bound to ARF22 and IAA26 to regulate auxin transport and mediated brassinosteroid signaling by directly binding to BZR3 and 14-3-3. ZmCLA4 bound two WRKY genes involved with abscisic acid, two genes (CYP75B1, CYP93D1) involved with jasmonic acid, B3 involved in the response to ethylene, and thereby negatively regulated leaf angle formation. We built a new regulatory network for the ZmCLA4 gene controlling leaf angle in maize, which contributed to the understanding of ZmCLA4’s regulatory mechanism and will improve grain yields by facilitating optimization of plant architecture.



2020 ◽  
Vol 71 (15) ◽  
pp. 4415-4427 ◽  
Author(s):  
Le Luo ◽  
Yali Zhang ◽  
Guohua Xu

Abstract Plant nitrogen (N), acquired mainly in the form of nitrate and ammonium from soil, dominates growth and development, and high-yield crop production relies heavily on N fertilization. The mechanisms of root adaptation to altered supply of N forms and concentrations have been well characterized and reviewed, while reports concerning the effects of N on the architecture of vegetative and reproductive organs are limited and are widely dispersed in the literature. In this review, we summarize the nitrate and amino acid regulation of shoot branching, flowering, and panicle development, as well as the N regulation of cell division and expansion in shaping plant architecture, mainly in cereal crops. The basic regulatory steps involving the control of plant architecture by the N supply are auxin-, cytokinin-, and strigolactone-controlled cell division in shoot apical meristem and gibberellin-controlled inverse regulation of shoot height and tillering. In addition, transport of amino acids has been shown to be involved in the control of shoot branching. The N supply may alter the timing and duration of the transition from the vegetative to the reproductive growth phase, which in turn may affect cereal crop architecture, particularly the structure of panicles for grain yield. Thus, proper manipulation of N-regulated architecture can increase crop yield and N use efficiency.



2019 ◽  
Author(s):  
Filip Z. Klawe ◽  
Thomas Stiehl ◽  
Peter Bastian ◽  
Christophe Gaillochet ◽  
Jan U. Lohmann ◽  
...  

AbstractCoordination of fate transition and cell division is crucial to maintain the plant architecture and to achieve efficient production of plant organs. In this paper, we analysed the stem cell dynamics at the shoot apical meristem (SAM) that is one of the plant stem cells locations. We designed a mathematical model to elucidate the impact of hormonal signaling on the fate transition rates between different zones corresponding to slowly dividing stem cells and fast dividing transit amplifying cells. The model is based on a simplified two-dimensional disc geometry of the SAM and accounts for a continuous displacement towards the periphery of cells produced in the central zone. Coupling growth and hormonal signaling results in a non-linear system of reaction-diffusion equations on a growing domain with the growth velocity depending on the model components. The model is tested by simulating perturbations in the level of key transcription factors that maintain SAM homeostasis. The model provides new insights on how the transcription factor HECATE is integrated in the regulatory network that governs stem cell differentiation.SummaryPlants continuously generate new organs such as leaves, roots and flowers. This process is driven by stem cells which are located in specialized regions, so-called meristems. Dividing stem cells give rise to offspring that, during a process referred to as cell fate transition, become more specialized and give rise to organs. Plant architecture and crop yield crucially depend on the regulation of meristem dynamics. To better understand this regulation, we develop a computational model of the shoot meristem. The model describes the meristem as a two-dimensional disk that can grow and shrink over time, depending on the concentrations of the signalling factors in its interior. This allows studying how the non-linear interaction of multiple transcription factors is linked to cell division and fate-transition. We test the model by simulating perturbations of meristem signals and comparing them to experimental data. The model allows simulating different hypotheses about signal effects. Based on the model we study the specific role of the transcription factor HECATE and provide new insights in its action on cell dynamics and in its interrelation with other known transcription factors in the meristem.





2017 ◽  
Vol 176 (1) ◽  
pp. 946-959 ◽  
Author(s):  
Yongyan Tang ◽  
Huanhuan Liu ◽  
Siyi Guo ◽  
Bo Wang ◽  
Zhitao Li ◽  
...  


2019 ◽  
Vol 116 (42) ◽  
pp. 21285-21290 ◽  
Author(s):  
Rongfeng Huang ◽  
Rui Zheng ◽  
Jun He ◽  
Zimin Zhou ◽  
Jiacheng Wang ◽  
...  

In both plants and animals, multiple cellular processes must be orchestrated to ensure proper organogenesis. The cell division patterns control the shape of growing organs, yet how they are precisely determined and coordinated is poorly understood. In plants, the distribution of the phytohormone auxin is tightly linked to organogenesis, including lateral root (LR) development. Nevertheless, how auxin regulates cell division pattern during lateral root development remains elusive. Here, we report that auxin activates Mitogen-Activated Protein Kinase (MAPK) signaling via transmembrane kinases (TMKs) to control cell division pattern during lateral root development. Both TMK1/4 and MKK4/5-MPK3/6 pathways are required to properly orient cell divisions, which ultimately determine lateral root development in response to auxin. We show that TMKs directly and specifically interact with and phosphorylate MKK4/5, which is required for auxin to activate MKK4/5-MPK3/6 signaling. Our data suggest that TMK-mediated noncanonical auxin signaling is required to regulate cell division pattern and connect auxin signaling to MAPK signaling, which are both essential for plant development.



Sign in / Sign up

Export Citation Format

Share Document