scholarly journals The plant DNA polymerase theta is essential for the repair of replication‐associated DNA damage

2021 ◽  
Author(s):  
Maherun Nisa ◽  
Clara Bergis ◽  
Jose‐Antonio Pedroza‐Garcia ◽  
Jeannine Drouin‐Wahbi ◽  
Christelle Mazubert ◽  
...  
Keyword(s):  
2015 ◽  
Vol 197 (17) ◽  
pp. 2792-2809 ◽  
Author(s):  
Sarita Mallik ◽  
Ellen M. Popodi ◽  
Andrew J. Hanson ◽  
Patricia L. Foster

ABSTRACTEscherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure ofE. colito DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that thein vitrointeraction between Rep and Pol IV reported previously also occursin vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecAin vivoand is recruited to sites of DSBs to aid in the restoration of DNA replication.IMPORTANCEDNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstratein vivolocalization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings providein vivoevidence that Pol IV aids in maintaining genomic stability not only by bypassing DNA lesions but also by participating in the restoration of stalled replication forks.


2002 ◽  
Vol 184 (12) ◽  
pp. 3287-3295 ◽  
Author(s):  
Elaine O. Davis ◽  
Edith M. Dullaghan ◽  
Lucinda Rand

ABSTRACT The bases of the mycobacterial SOS box important for LexA binding were determined by replacing each base with every other and examining the effect on the induction of a reporter gene following DNA damage. This analysis revealed that the SOS box was longer than originally thought by 2 bp in each half of the palindromic site. A search of the Mycobacterium tuberculosis genome sequence with the new consensus, TCGAAC(N)4GTTCGA, identified 4 sites which were perfect matches and 12 sites with a single mismatch which were predicted to bind LexA. Genes which could potentially be regulated by these SOS boxes were ascertained from their positions relative to the sites. Examination of expression data for these genes following DNA damage identified 12 new genes which are most likely regulated by LexA as well as the known M. tuberculosis DNA damage-inducible genes recA, lexA, and ruvC. Of these 12 genes, only 2 have a predicted function: dnaE2, a component of DNA polymerase III, and linB, which is similar to 1,3,4,6-tetrachloro-1,4-cylcohexadiene hydrolase. Curiously, of the remaining 10 genes predicted to be LexA regulated, 7 are members of the M. tuberculosis 13E12 repeat family, which has some of the characteristics of mobile elements.


1997 ◽  
Vol 272 (6) ◽  
pp. L1174-L1180 ◽  
Author(s):  
M. Takeoka ◽  
W. F. Ward ◽  
H. Pollack ◽  
D. W. Kamp ◽  
R. J. Panos

Administration of exogenous keratinocyte growth factor (KGF) prevents or attenuates several forms of oxidant-mediated lung injury. Because DNA damage in epithelial cells is a component of radiation pneumotoxicity, we determined whether KGF ameliorated DNA strand breaks in irradiated A549 cells. Cells were exposed to 137Cs gamma rays, and DNA damage was measured by alkaline unwinding and ethidium bromide fluorescence after a 30-min recovery period. Radiation induced a dose-dependent increase in DNA strand breaks. The percentage of double-stranded DNA after exposure to 30 Gy increased from 44.6 +/- 3.5% in untreated control cells to 61.6 +/- 5.0% in cells cultured with 100 ng/ml KGF for 24 h (P < 0.05). No reduction in DNA damage occurred when the cells were cultured with KGF but maintained at 0 degree C during and after irradiation. The sparing effect of KGF on radiation-induced DNA damage was blocked by aphidicolin, an inhibitor of DNA polymerases-alpha, -delta, and -epsilon and by butylphenyl dGTP, which blocks DNA polymerase-alpha strongly and polymerases-delta and -epsilon less effectively. However, dideoxythymidine triphosphate, a specific inhibitor of DNA polymerase-beta, did not abrogate the KGF effect. Thus KGF increases DNA repair capacity in irradiated pulmonary epithelial cells, an effect mediated at least in part by DNA polymerases-alpha, -delta, and -epsilon. Enhancement of DNA repair capability after cell damage may be one mechanism by which KGF is able to ameliorate oxidant-mediated alveolar epithelial injury.


Cell Cycle ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Marietta Y.W.T. Lee ◽  
Sufang Zhang ◽  
Szu Hua Lin ◽  
Xiaoxiao Wang ◽  
Zbigniew Darzynkiewicz ◽  
...  

2021 ◽  
Vol 478 (7) ◽  
pp. 1399-1412
Author(s):  
Evgeniy S. Shilkin ◽  
Anastasia S. Gromova ◽  
Margarita P. Smal ◽  
Alena V. Makarova

Y-family DNA polymerase iota (Pol ι) is involved in DNA damage response and tolerance. Mutations and altered expression level of POLI gene are linked to a higher incidence of cancer. We biochemically characterized five active site polymorphic variants of human Pol ι: R71G (rs3218778), P118L (rs554252419), I236M (rs3218784), E251K (rs3218783) and P365R (rs200852409). We analyzed fidelity of nucleotide incorporation on undamaged DNA, efficiency and accuracy of DNA damage bypass, as well as 5′-deoxyribophosphate lyase (dRP-lyase) activity. The I236M and P118L variants were indistinguishable from the wild-type Pol ι in activity. The E251K and P365R substitutions altered the spectrum of nucleotide incorporation opposite several undamaged DNA bases. The P365R variant also reduced the dRP-lyase activity and possessed the decreased TLS activity opposite 8-oxo-G. The R71G mutation dramatically affected the catalytic activities of Pol ι. The reduced DNA polymerase activity of the R71G variant correlated with an enhanced fidelity of nucleotide incorporation on undamaged DNA, altered lesion-bypass activity and reduced dRP-lyase activity. Therefore, this amino acid substitution likely alters Pol ι functions in vivo.


2011 ◽  
Vol 23 (2) ◽  
pp. 806-822 ◽  
Author(s):  
Alessandra Amoroso ◽  
Lorenzo Concia ◽  
Caterina Maggio ◽  
Cécile Raynaud ◽  
Catherine Bergounioux ◽  
...  

1997 ◽  
Vol 2 (11) ◽  
pp. 695-709 ◽  
Author(s):  
Masayuki Yokoi ◽  
Masaki Ito ◽  
Masako Izumi ◽  
Hiroshi Miyazawa ◽  
Hirokazu Nakai ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4245
Author(s):  
Tuyen T. Dang ◽  
Julio C. Morales

Cellular survival is dependent on the efficient replication and transmission of genomic information. DNA damage can be introduced into the genome by several different methods, one being the act of DNA replication. Replication is a potent source of DNA damage and genomic instability, especially through the formation of DNA double strand breaks (DSBs). DNA polymerase alpha is responsible for replication initiation. One subunit of the DNA polymerase alpha replication machinery is POLA2. Given the connection between replication and genomic instability, we decided to examine the role of POLA2 in DSB repair, as little is known about this topic. We found that loss of POLA2 leads to an increase in spontaneous DSB formation. Loss of POLA2 also slows DSB repair kinetics after treatment with etoposide and inhibits both of the major double strand break repair pathways: non-homologous end-joining and homologous recombination. In addition, loss of POLA2 leads to increased sensitivity to ionizing radiation and PARP1 inhibition. Lastly, POLA2 expression is elevated in glioblastoma multiforme tumors and correlates with poor overall patient survival. These data demonstrate a role for POLA2 in DSB repair and resistance to genotoxic stress.


Sign in / Sign up

Export Citation Format

Share Document