scholarly journals Effects of Pore Additives on Deep Eutectic Solvent Immobilization for CO₂/N₂ Gas Separation Using Supported Deep Eutectic Solvent Membranes

2021 ◽  
Vol 25 (2) ◽  
pp. 1-14
Author(s):  
Amira Mohd Nasib ◽  
Nora Jullok ◽  
Mohd Irfan Hatim Mohamad Dzahir ◽  
Patricia Luis ◽  
Bart Van Der Bruggen

This work analyses the effect of two different pore additives focusing on polyethylene glycol (PEG) and lithium chloride (LiCl) at different concentrations on the immobilization of a deep eutectic solvent (DES) in a polyvinylidene fluoride-co-polytetrafluoroethylene (PVDF-co-PTFE) membrane. Two compounds were chosen to synthesized the DES; choline chloride as halide salt and ethylene glycol as a hydrogen bond donor.  The DES was impregnated onto the membrane pores by applying a vacuum-based technique. The membranes were prepared via phase inversion by means of immersion precipitation. For characterization purposes, scanning electron microscopy (SEM-EDX) was used to analyse the morphology of the supported- DES-membranes together with energy dispersive X-ray spectrometry. The gravimetric method was applied to calculate the porosity, while the membrane performance for carbon dioxide (CO2) permeation and separation was assessed to determine the capability of the DES-impregnated membrane. The outcomes demonstrating that the highest loading of DES in the membrane support was obtained when 3 wt% PEG was added into the polymer solution with a porosity of 70.5%. The CO2 permeability and the CO2/N2 selectivity achieved using the synthesized membrane are 2.81 x 106 barrer and 3.46, respectively, when working with a transmembrane pressure of 1.1 bar and a temperature of 25ᵒC at 200 cm3 /min of gas flow rate. The results showed that additional of PEG as a pore additives able to load the highest DES in the membrane pore and resulted the best CO2 permeability and the CO2/N2 selectivity.

2020 ◽  
Vol 16 (3) ◽  
pp. 338-341
Author(s):  
Amira Mohd Nasib ◽  
Irfan Hatim ◽  
Nora Jullok ◽  
Syahmie Rasidi

Polyvinylidene fluoride-co-polytetrafluoroethylene, PVDF-co-PTFE polymer was used as a membrane support. The asymmetric membranes were formed by immersion of casted membrane film into the coagulation bath. This work manipulated the coagulant bath medium by mixing ethanol with distilled water at different weight percentages (0, 25 and 50 wt. % of ethanol). The structures of fabricated membranes were observed to have different morphologies. Higher ethanol content altered the membrane structure from finger-like to sponge-like structure, and hence differed in membrane porosity. Vacuum-based technique was chosen to impregnate the deep eutectic solvent (DES) into the pores of membrane support. DES was prepared by mixing choline chloride (ChCl) and ethylene glycol at a ratio of 1:3. Scanning electron microscopy (SEM) was used to study the membrane morphology changes while in order to determine the immobilization of DES, energy dispersive X-ray (EDX) analysis was used. The porosity of fabricated PVDF-co-PTFE membrane was determined by means of gravimetric method. Lastly, the membrane separation performance using CO2 and N2 gasses were used to determine the capability of the supported-DES-membrane.  The results demonstrated the highest immobilization of DES in supported membrane pores was achieved when combination of 25 wt. % of ethanol and 75 wt. % distilled water was used as a coagulant bath medium. The respective membrane has 74.5% porosity with the most excellent performance of CO2 separation at 25.5 x 103 GPU with CO2/N2 selectivity of 2.89.


2009 ◽  
Vol 62 (4) ◽  
pp. 341 ◽  
Author(s):  
Andrew P. Abbott ◽  
John Collins ◽  
Ian Dalrymple ◽  
Robert C. Harris ◽  
Reena Mistry ◽  
...  

The present paper describes the design and operation of the first large-scale extraction and separation of metals from a complex matrix using an ionic liquid. The liquid was a deep eutectic solvent based on choline chloride. The hydrogen-bond donors were mixed to optimize solubility and fluid viscosity. It was found that the incorporation of a fine particulate dust actually decreased the viscosity of the fluid. The present paper shows that selective extraction of zinc and lead can be achieved through judicious choice of the hydrogen-bond donor and it is also shown that metals in solution can be separated using cementation with zinc powder. Electrowinning of pure zinc is demonstrated but scale-up tests suggest that the process is relatively slow and has poor current efficiency. An alternative methodology was developed to rapidly recover the zinc from solution using dilute ammonia solution. It is also shown for the first time that cementation can be efficiently carried out in ionic liquids because the recovered metal is porous and allows thick layers to be deposited.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3258
Author(s):  
Ana T. S. C. Brandão ◽  
Renata Costa ◽  
A. Fernando Silva ◽  
Carlos M. Pereira

The urgent need to reduce the consumption of fossil fuels drives the demand for renewable energy and has been attracting the interest of the scientific community to develop materials with improved energy storage properties. We propose a sustainable route to produce nanoporous carbon materials with a high−surface area from commercial graphite using a dry ball−milling procedure through a systematic study of the effects of dry ball−milling conditions on the properties of the modified carbons. The microstructure and morphology of the dry ball−milled graphite/carbon composites are characterized by BET (Brunauer–Emmett–Teller) analysis, SEM (scanning electron microscopy), ATR−FTIR (attenuated total reflectance–Fourier transform infrared spectroscopy) and Raman spectroscopy. As both the electrode and electrolyte play a significant role in any electrochemical energy storage device, the gravimetric capacitance was measured for ball−milled material/glassy carbon (GC) composite electrodes in contact with a deep eutectic solvent (DES) containing choline chloride and ethylene glycol as hydrogen bond donor (HBD) in a 1:2 molar ratio. Electrochemical stability was tracked by measuring charge/discharge curves. Carbons with different specific surface areas were tested and the relationship between the calculated capacitance and the surface treatment method was established. A five−fold increase in gravimetric capacitance, 25.27 F·g−1 (G40) against 5.45 F·g−1, was found for commercial graphene in contact with DES. Optimal milling time to achieve a higher surface area was also established.


Author(s):  
Renita Manurung ◽  
Golda Claudia Simanjuntak ◽  
Raja Nico Perez ◽  
Ardian Syahputra ◽  
Muhammad Arif Alhamdi ◽  
...  

Author(s):  
C. K. Chiam ◽  
M. Nurashiqin ◽  
K. Zykamilia ◽  
N. M. Ismail ◽  
K. Duduku ◽  
...  

This work reports the effect of the membrane pore size distribution on the oil droplets size distribution in permeate using the polyvinylidene fluoride (PVDF) membranes. The sponge-like structures of the PVDF membranes were fabricated via the phase inversion technique using 30% v/v ethanol aqueous solution as coagulation medium. Water and polyethylene glycol (PEG1000) were used as the pore forming additives in the dope solutions. Microfiltration was employed to coalesce the oil droplets at the transmembrane pressure of 2.5 bar. Simulated alkaline-surfactant-polymer (ASP) produced water was tested as the feed solution. Results revealed that the PVDF membranes with sponge-like structure were formed. The additives in the dope solutions have induced the membranes to become thicker due to more porous, spongy and resilient structure. The membrane pore sizes increased with the presence of the additives in the dope solutions especially when larger molecular weight of the additive, i.e., PEG1000 was used. The mode of the oil droplets radius increased from 61.2 nm in the feed solution to 95.1, 356.2 and 1335 nm in the permeates by the corresponding membranes without additive, with water and PEG1000 as the additives. The membranes with larger pore sizes as well as more open structure were able to trap and coalesce more oil droplets which produced larger size of the oil droplets in the permeates.


2020 ◽  
Author(s):  
Novin Mehrabi ◽  
Umar Faruq Abdul Haq ◽  
M. Toufiq Reza ◽  
Nirupam Aich

Deep eutectic solvents (DESs) have emerged as a substitute for ionic liquids with lower cost and enhanced biodegradability. The most common class of DES refers to a mixture of a quaternary ammonium or phosphonium salt and a hydrogen bond donor (e.g., carboxylic acid) with a melting point lower than that of individual components. DESs have recently shown promise for surface modification of graphene oxide (GO) nanosheets with different functional groups. We hypothesize that such surface functionalization of GO (and other carbon nanomaterials) with DESs can provide a new route to conjugate metallic nanoparticles onto GO surfaces (and similar). Here, we used a typical DES, based on choline chloride and urea, for the conjugation of presynthesized Fe<sub>3</sub>O<sub>4</sub> nanoparticles onto GO nanosheets at different GO:Fe<sub>3</sub>O<sub>4</sub> ratios. Physicochemical characterization not only confirmed the ability of DES to prepare DES/GO-Fe<sub>3</sub>O<sub>4</sub> nanohybrids successfully, but also evidenced the influence of DES on the homogeneity and size distribution of Fe<sub>3</sub>O<sub>4 </sub>nanoparticles in these nanohybrids. DES/GO-Fe<sub>3</sub>O<sub>4</sub> nanohybrids can perform better than both GO and Fe<sub>3</sub>O<sub>4</sub> as adsorbents for organic dyes (methylene blue, MB) and heavy metals (Lead (II)). However, depending on the contaminant type, the contaminant removal performance varied differently for DES/GO-Fe<sub>3</sub>O<sub>4</sub> nanohybrids with different ratios.


2017 ◽  
Author(s):  
◽  
Maryam Al Ameri

In this study, green solvent-based pretreatment was developed for improving the conversion of switchgrass to acetoin. Deep eutectic solvents (DESs), comprising choline chloride (ChCl) as a hydrogen-bond acceptor (HBA) and various chemical as a hydrogen-bond donor (HBD), were used to pretreat switchgrass. Different HBD groups, including polyalcohol, amid, diazole, and carboxylic acid, were used to synthesize DESs. The DESs using ChCl-formic acid and ChCl-lactic acid-acetic acid showed excellent performance in enhancing switchgrass digestibility. The obtained hydrolysate was successfully detoxified by using overliming detoxification, which was further used for acetoin fermentation by Bacillus licheniformis (NRRL B-642). The yield and titer of the produced acetoin were 0.377 g/g and 19.6 g/L, respectively. Our research demonstrates that DES pretreatment is an effective method for reducing biomass recalcitrance and improving the conversion of biomass into chemicals.


2020 ◽  
Author(s):  
Novin Mehrabi ◽  
Umar Faruq Abdul Haq ◽  
M. Toufiq Reza ◽  
Nirupam Aich

Deep eutectic solvents (DESs) have emerged as a substitute for ionic liquids with lower cost and enhanced biodegradability. The most common class of DES refers to a mixture of a quaternary ammonium or phosphonium salt and a hydrogen bond donor (e.g., carboxylic acid) with a melting point lower than that of individual components. DESs have recently shown promise for surface modification of graphene oxide (GO) nanosheets with different functional groups. We hypothesize that such surface functionalization of GO (and other carbon nanomaterials) with DESs can provide a new route to conjugate metallic nanoparticles onto GO surfaces (and similar). Here, we used a typical DES, based on choline chloride and urea, for the conjugation of presynthesized Fe<sub>3</sub>O<sub>4</sub> nanoparticles onto GO nanosheets at different GO:Fe<sub>3</sub>O<sub>4</sub> ratios. Physicochemical characterization not only confirmed the ability of DES to prepare DES/GO-Fe<sub>3</sub>O<sub>4</sub> nanohybrids successfully, but also evidenced the influence of DES on the homogeneity and size distribution of Fe<sub>3</sub>O<sub>4 </sub>nanoparticles in these nanohybrids. DES/GO-Fe<sub>3</sub>O<sub>4</sub> nanohybrids can perform better than both GO and Fe<sub>3</sub>O<sub>4</sub> as adsorbents for organic dyes (methylene blue, MB) and heavy metals (Lead (II)). However, depending on the contaminant type, the contaminant removal performance varied differently for DES/GO-Fe<sub>3</sub>O<sub>4</sub> nanohybrids with different ratios.


2016 ◽  
Vol 12 ◽  
pp. 1-4 ◽  
Author(s):  
David O. Oseguera-Galindo ◽  
Roberto Machorro-Mejia ◽  
Nina Bogdanchikova ◽  
Josue D. Mota-Morales

Sign in / Sign up

Export Citation Format

Share Document