scholarly journals Risk Assessment of Horizontal Wet Etching Equipment System in Manufacturing Plant Industry

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Nor'ain Mohd Ramli ◽  
Siti Aslina Hussain

Maintenance is one of the important roles in the high technology manufacturing industry. It is related to the key performance factors of the company such as quality, productivity, and cost. To achieve these factors, a reliability plan should be implemented which helps to maximise production value by implementing successful asset maintenance. This research project aims to focus on the critical process equipment known as Horizontal Wet Etching Equipment (HWEE) used in the wet etching process. The components in the HWEE system were identified by referring to the process and instrumentation diagram (PID) of the equipment and were categorised in different modes. Data on mean time to repair (MTTR) and mean time between repairs (MTBF) were collected based on previous company records. The data were analysed using MAROS software. Failure Mode and Effect Analysis (FMEA) was done to understand the risk of each of the components. The result shows that piping and gearbox have the highest RPN with 126 and 105, respectively. This study helps to identify critical components and is able to help the company to improve equipment reliability and reduce maintenance cost. Corrective action can be implemented to reduce the RPN for both components. Thus, it would help the industry to increase the key performance and become more competitive in the business environment.

2018 ◽  
Vol 154 ◽  
pp. 01056
Author(s):  
Fifi Herni Mustofa ◽  
Ria Ferdian Utomo ◽  
Kusmaningrum Soemadi

PT Lucas Djaja is a company engaged in the pharmaceutical industry which produce sterile drugs and non-sterile. Filling machine has a high failure rate and expensive corrective maintenance cost. PT Lucas Djaja has a policy to perform engine maintenance by way of corrective maintenance. The study focused on the critical components, namely bearing R2, bearing 625 and bearing 626. When the replacement of the failure done by the company is currently using the formula mean time to failure with the result of bearing R2 at point 165 days, bearing 625 at a point 205 days, and bearing 626 at a point 182 days. Solutions generated by using age replacement method with minimization of total maintenance cost given on the bearing R2 at a point 60 days, bearing 625 at the point of 80 days and bearing 626 at a point 40 days.


Author(s):  
Kamran Shah ◽  
Hassan Khurshid ◽  
Izhar Ul Haq ◽  
Shaukat Ali Shah ◽  
Zeeshan Ali

In manufacturing or production setup, maintenance cost is one of the major portions of overall operating expenditure. It can vary between 15 to 60 percentage of overall cost for various industries including food related industries, iron, steel and other heavy industries. Such a high cost directly impacts manufacturing setup, profitability and sustainability in long run. In most of the industries, ineffective maintenance management can result in loss of capital and inefficient human resource deployment. This in turn affects the plants’ ability to manufacture quality products that are competitive in the market. Various maintenance management strategies including Operate to Failure (OTF), Design Out Maintenance (DOM), Skill Level Upgrade (SLU), ConditionBased Monitoring (CBM) and Fixed Time Maintenance (FTM) are used in industries for maximizing productivity. In recent years, Computerized Maintenance Management System (CMMS) has become an integral part of most of the industries so its importance and characteristics cannot be understated. While CMMS cannot live standalone, it requires some decision-making techniques to be equipped with. These techniques range from Failure Mode and Effect Analysis (FMEA) to Decision Making Grid (DMG). In this paper, concept of DMG has been applied to an automotive parts Manufacturing Industry in conjunction with Weibull analysis. Parallels are drawn between the results of DMG and Weibull analysis.


2017 ◽  
Vol 23 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Faizan Saleem ◽  
Salman Nisar ◽  
Muhammad Ali Khan ◽  
Sohaib Zia Khan ◽  
Mohammad Aslam Sheikh

Purpose The purpose of this paper is to formulate a benchmark to increase the tyre curing press production rate while minimizing tyre curing press downtime and maintenance cost with the help of a maintenance management technique based on overall equipment effectiveness (OEE). Design/methodology/approach The methodology is based on determining the OEE of tyre curing press before and after rectifying the causes of failures. The failure mode and effect analysis (FMEA) technique is used to find out the root causes of repetitive failures in tyre curing press by using the risk priority number. Findings A significant change in the value of OEE is observed after rectifying the repetitive failures, which were determined using the FMEA technique. Thus, it is concluded that the OEE and FMEA assist in improving the industrial performance and competitiveness of the production equipment studied. Research limitations/implications This study is limited to determining the OEE of single equipment only, not the whole production system. Manufacturing facilities are dependent on the operating environment; therefore a comparison of two different manufacturing plants based on the OEE value would not be justified. Practical implications This study can be applied in any tyre manufacturing industry in order to take competitive benefits, such as reduction in equipment downtime, increased production and reduction in maintenance cost. Originality/value The angle from which the paper approaches the bottleneck problem in a tyre production line is original for the studied company and shows positives results. It allows the company to apply the same approach in its other production equipment, lines and factories to achieve improvement in industrial performance and competitiveness.


Author(s):  
Liza Nafiah Maulidina ◽  
Fransiskus Tatas Dwi Atmaji ◽  
Judi Alhilman

The objective of this research was to determine the optimal maintenance time interval for the selected critical components and the total cost of maintenance of a plastic injection machine. In determining the critical components, a risk matrix was used, and three components were selected, namely, hydraulic hose, barrel, and motor. Using the Reliability and Risk Centered Maintenance (RRCM) method, the researchers got a proposed maintenance policy and the total maintenance cost. Based on the result, it shows that there are seven proposed maintenance tasks with three scheduled oncondition tasks and four scheduled restoration tasks with an average maintenance interval of two months. The total maintenance cost proposed is IDR91.595.318. The cost is smaller compared to the actual maintenance costs of the company.


Author(s):  
Jasdev Bhatti ◽  
Mohit Kumar Kakkar

Background and Aim: With an increase in demands about reliability of industrial machines following continuous or discrete distribution, the important thing to be noticed is that in all previous researches where systems are having more than one failure no iteration technique has been studied to separate the failed unit on basis of its failure. Therefore, aim of our paper is to analyze the real industrial discrete problem following cold standby units arranged in parallel manner with newly concept of inspection procedure for failed units to inspect the exact failure and being communicator to the repairman for repairing exact failed part of unit for saving time and maintenance cost. Methods: The geometric distribution and regenerative techniques had been applied for calculating different reliability measures like mean time to system failure, availability of a system, inspection, repair and failed time of unit. Results: Graphical and analytical study had also been done to analyze the increasing/decreasing behavior of profit function w.r.t repair and failure rate. The system responded properly in fulfilling his basic needs. Conclusion: The calculated value of all reliability parameter is helpful for studying any other models following same concept under different environmental conditions. Thus, it concluded that, reliability increases/decreases with increase in repair/failure rate. Also, the evaluated results by this paper provides the better reliability testing strategies that helps to develop new techniques which leads to increase the effectiveness of system.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-8
Author(s):  
Fatmir Azemi ◽  
Edmond Hajrizi ◽  
Bekim Maloku

In this paper the concept of Maturity Level of Kosovo Industry will be presented according to the Industry 4.0. Digitalization of factory has impact the entire business environment and lead to Smart Enterprises. To create a model of Smart Factory, first we have analyzed the existing situation of Kosovo Manufacturing Industry with regard to revolution of Industry. In this paper we will describe the results of a recent research at the Kosovo manufacturing companies and are included metalworking and furniture industry, where is developed a Maturity Level for Kosovo Industry. To describe the Maturity Level of Kosovo Industry we have delivered questionnaire and have been done interviews with CEOs (Chief Executive Officer). The average score of Industrial Maturity Level for Kosovo Industry is 2.14 which represent 2nd Industrial Revolution, but some of enterprises belong to 3rd Industrial Revolution. Also, the main barriers of this low level of Maturity Level of Kosovo Industry are highlights based on questionnaire and interviews with CEOs, such as: lack of training programs, language barriers, high cost of purchasing/maintenance of technology, unskilled workers, and est.


Author(s):  
Xinlong Li ◽  
Yan Ran ◽  
Genbao Zhang

Preventive maintenance is an important means to extend equipment life and improve equipment reliability. Traditional preventive maintenance decision-making is often based on components or the entire system, the granularity is too large and the decision-making is not accurate enough. The meta-action unit is more refined than the component or system, so the maintenance decision-making based on the meta-action unit is more accurate. Therefore, this paper takes the meta-action unit as the research carrier, considers the imperfect preventive maintenance, based on the hybrid hazard rate model, established the imperfect preventive maintenance optimization model of the meta-action unit, and the optimization solution algorithm was given for the maintenance strategy. Finally, through numerical analysis, the validity of the model is verified, and the influence of different maintenance costs on the optimal maintenance strategy and optimal maintenance cost rate is analyzed.


Author(s):  
Ahmet Özcan

In the current business environment, the costing system used within the firms has prominent impact on strategic decisions. High-quality cost data significantly increases the quality of firms' strategic decisions. The activity-based costing system has failed to satisfy the needs of firms operating in the competitive economic environment. The time-driven activity-based costing system is the developed version of activity-based costing system. Time-driven activity-based costing system is one of the most sophisticated costing systems that enable firms to accurately calculate the cost of goods and services. Time-equations are used in time-driven activity-based costing system to estimate the time consumed by each activity. This chapter aims to discuss main dynamics of time-driven activity-based costing system and provides an illustration of this costing system in the manufacturing industry. The case study demonstrates that time-driven activity-based costing system is useful in calculating idle capacity cost.


Sign in / Sign up

Export Citation Format

Share Document