scholarly journals THE EFFECT OF UTILIZING SILICA FUME AND EGGSHELL ASH ON THE GEOTECHNICAL PROPERTIES OF SOFT KAOLIN CLAY

2021 ◽  
Vol 84 (1) ◽  
pp. 159-170
Author(s):  
Muhammad Syamsul Imran Zaini ◽  
Muzamir Hasan ◽  
Ling Sin Yie ◽  
Khairil Azman Masri ◽  
Ramadhansyah Putra Jaya ◽  
...  

The application of chemical stabilizer in soil stabilization can effectively reduce the negative environmental impact in the construction industry. However, the stabilization of soft clay remains a challenge due to the costly and non-eco-friendly materials such as cement and lime. This research demonstrates the combination of SF and ESA in stabilizing the kaolin soils, based on the basic engineering properties and undrained shear strength (USS). Its effect was studied via the inclusion as cement replacement material in kaolin soil at 2, 4 and 6% (by weight of dry soft kaolin clay soil) of SF and ESA substitutions of 3, 6 and 9% (by weight of dry soft kaolin clay and SF content). The result shows a considerably lower specific gravity (4.9% reduction), reduced plasticity index (PI)(48.4% reduction), decreased maximum dry density (MDD) (5.5% reduction), increased optimum moisture content (OMC)(8.7% increment), and higher USS (68.8%). In conclusion, the combinations of SF and ESA as soil stabilization agents successfully enhance the soil strength of the kaolin opening a route to the low cost and eco-friendly materials in soil stabilization.

2020 ◽  
Vol 4 (1) ◽  
pp. 08-14
Author(s):  
Youdeowei, P.O. ◽  
Nwankwoala, H.O. ◽  
Ayibanimiworio, G.T

This study assesses the stabilization of marine clay soil using cement and lime to improve on the subgrade material. The tests conducted include: the natural moisture content, specific gravity, sieve analysis, Atterberg limit, compaction and California Bearing Ratio (CBR). The types of stabilization used were mechanical and chemical. The results obtained were classified using AASHTO classification system and based on the results the soil corresponds to group A-6 soils. The highest CBR values of 33.24% and 424.35% were obtained at 20% cement content for unsoaked and soaked and for lime the highest CBR values were 5.07 and 10.46 for 11% lime content for both unsoaked and unsoaked. Based on the results obtained, the addition of cement and lime to clay soil in the presence of water improved the CBR values for soft clay stabilization for highway construction with low traffic volume. It is therefore concluded that the addition of cement and lime to clay soil improved the bearing capacity and the maximum dry density of the clay soil. Further research should be carried out to examine the effects of industrial by-products on effective clay soil stabilization.


2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Siaw Yah Chong ◽  
Khairul Anuar Kassim

Marine clay is a problematic construction material, which is often encountered in Malaysian coastal area. Previous researchers showed that lime stabilization effectively enhanced the engineering properties of clay. For soft clay, both strength and consolidation characteristics are equally important to be fully understood for design purpose. This paper presented the effect of lime on compaction, strength and consolidation characteristics of Pontian marine clay. Compaction, unconfined compression, direct shear, Oedometer and falling head permeability tests were conducted on unstabilized and lime stabilized samples at various ages. Specimens were prepared by compaction method based on 95 percent maximum dry density at the wetter side of compaction curve. It was found that lime successfully increased the strength, stiffness and workability of Pontian marine clay; however, the permeability was reduced. Unconfined compressive strength of stabilized soil was increased by 49 percent at age of 56 days whereas compressibility and permeability was reduced by 48 and 67 percent, respectively. From laboratory tests, phenomenon of inconsistency in engineering characteristics was observed for lime stabilized samples below age of 28 days. This strongly proved that lime stabilized soil underwent modification phase before stabilization phase which provided the long term improvement.


2018 ◽  
Vol 34 ◽  
pp. 01012 ◽  
Author(s):  
Mohammed Ali Mohammed Al-Bared ◽  
Aminaton Marto ◽  
Indra Sati Hamonangan Harahap ◽  
Fauziah Kasim

Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.


2021 ◽  
Vol 6 (2) ◽  
pp. 044-050
Author(s):  
Tsion Mindaye ◽  
Emer Tucay Quezon ◽  
Temesgen Ayna

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


2021 ◽  
Vol 7 (11) ◽  
pp. 1947-1963
Author(s):  
Sudip Basack ◽  
Ghritartha Goswami ◽  
Hadi Khabbaz ◽  
Moses Karakouzian ◽  
Parinita Baruah ◽  
...  

Soft ground improvement to provide stable foundations for infrastructure is national priority for most countries. Weak soil may initiate instability to foundations reducing their lifespan, which necessitates the adoption of a suitable soil stabilization method. Amongst various soil stabilization techniques, using appropriate admixtures is quite popular. The present study aims to investigate the suitability of bagasse ash and stone dust as the admixtures for stabilizing soft clay, in terms of compaction and penetration characteristics. The studies were conducted by means of a series of laboratory experimentations with standard Proctor compaction and CBR tests. From the test results it was observed that adding bagasse ash and stone dust significantly upgraded the compaction and penetration properties, specifically the values of optimum moisture content, maximum dry density and CBR. Comparison of test results with available data on similar experiments conducted by other researchers were also performed. Lastly, a study on the cost effectiveness for transport embankment construction with the treated soils, based on local site conditions in the study area of Assam, India, was carried out. The results are analyzed and interpreted, and the relevant conclusions are drawn therefrom. The limitations and recommendations for future research are also included. Doi: 10.28991/cej-2021-03091771 Full Text: PDF


2019 ◽  
Vol 803 ◽  
pp. 331-337 ◽  
Author(s):  
Hengchhorn Phai ◽  
Amin Eisazadeh

Bangkok clay (BC) is notorious for its poor engineering properties in Thailand and world-widely. In terms of workability, it is significant to modify its naturally weak properties. Nowadays, humans are overusing Earth’s resources and generating so much waste. In consequence, eco-friendly and cost cutting improvements are appreciated in geotechnical field. At the same time, Rice Husk Ash (RHA) is a cheap potential material for soil improvement. Lime is also known as a common material used in soil stabilization both solely and mixed with other materials. An inevitable step to every soil stabilization is to perform compaction tests that gives basic notions to treat soil. In this experimental study, compaction tests were proceeded with soil mixed with 0%, 10%, 20%, 30%, 50% of Rice Husk Ash (RHA) by dry soil mass in replacement manner and added 0%, 4%, 8%, 12% of lime. Overall, the more RHA and lime amount is mixed with soil, the higher Optimum Moisture Content (OMC) gets. This means that when replacement/stabilizers are added more and more, the soil needs more water to reach its Maximum Dry Density (MDD). Unlike OMC, MDD reduces when quantity of additives is increased.


2021 ◽  
Author(s):  
Emer Tucay Quezon ◽  
Tsion Mindaye

Expansive soil swells when it is wet, and it will shrink when it dries. Due to this behavior of the soil, the strength and other properties of soil are inferior. To improve its properties, it is necessary to stabilize the soil with different stabilizers. Soil stabilization is a process to treat the soil to maintain, alter, or improve expansive soil performance. In this study, the potential of 'Fino' as stabilizing additive to expansive soil was investigated for the improving engineering properties of expansive soil to be used as subgrade material. The evaluation involved the determination of the Free Swell test, CBR test, Atterberg's limits, and the Proctor test of expansive soil in its natural state as well as when mixed with varying proportions of 'Fino.' The practices were performed on six proportions 5%, 10%, 15%, 20%, 25% and 30 % with expansive soil. The research result indicated a considerable reduction in Swelling, and the Maximum dry Density of soil was improved. Optimum moisture content decreased in increasing 'Fino.' At 30% of 'Fino,' the CBR values of expansive soil increased from 1.06% to 5.94%, Liquid Limit decreased from 95.2% to 29.4%, plasticity index decreased from 57.24% to 17.82% and the degree of expansion of the natural subgrade soil has reduced from "very high to medium." Hence, it is concluded that the 'Fino' at 30% has shown significant improvement in the expansive soil's engineering properties meeting the ERA and AASHTO Standard specifications requirements for road subgrade material.


2021 ◽  
Vol 11 (16) ◽  
pp. 7503
Author(s):  
Woubishet Zewdu Taffese ◽  
Kassahun Admassu Abegaz

Soil stabilization is the alteration of physicomechanical properties of soils to meet specific engineering requirements of problematic soils. Laboratory examination of soils is well recognized as appropriate for examining the engineering properties of stabilized soils; however, they are labor-intensive, time-consuming, and expensive. In this work, four artificial intelligence based models (OMC-EM, MDD-EM, UCS-EM+, and UCS-EM−) to predict the optimum moisture content (OMC), maximum dry density (MDD), and unconfined compressive strength (UCS) are developed. Experimental data covering a wide range of stabilized soils were collected from previously published works. The OMC-EM, MDD-EM, and UCS-EM− models employed seven features that describe the proportion and types of stabilized soils, Atterberg limits, and classification groups of soils. The UCS-EM+ model, besides the seven features, employs two more features describing the compaction properties (OMC and MDD). An optimizable ensemble method is used to fit the data. The model evaluation confirms that the developed three models (OMC-EM, MDD-EM, and UCS-EM+) perform reasonably well. The weak performance of UCS-EM− model validates that the features OMC and MDD have substantial significance in predicting the UCS. The performance comparison of all the developed ensemble models with the artificial neural network ones confirmed the prediction superiority of the ensemble models.


Author(s):  
Harpreet Singh

Abstract: Soil is the most widely used and basic material for civil engineering. The soil is used for houses, walls, bridges and roads. The Earth provides various types of soil and varies in its properties, scale, composition and textures. The earth's soil is a natural fine grain rock that contains one or more minerals from Earth, which have metal oxides and traces of organic matter. Based on the structure, the clay has quite a range of characteristics. It's slow, and difficult to accelerate, and used for something small. This study is aimed at achieving soil engineering properties for subgrade. In the subgrade construction, waste plastic bottles are used from waste disposal and the application of raw waste soil reinforcement materials and tried to stabilize the clay soil in different strong lime percentages (2 percent, 4 percent, 6 percent, 8 percent, 10 percent, and 12 percent). Testing of the strength of the clay earth, like Maximum Dry Density (MDD) and California Bearing (CBR) was done at different plastic strip percentages. In order to measure improvements in technologies, the clay floor swelling index and the microscopic examination also are performed. Keywords: Clay soil, Lime, Plastic, fiber material.


2019 ◽  
Vol 48 (2) ◽  
pp. 25-30
Author(s):  
Boriana Tchakalova

Plastic soil-cement is a type of soil stabilization used for the treatment of natural soil to improve its engineering properties. It is a hardened material prepared by mixing soil and Portland cement at a water content higher than optimum, usually near the liquid limit, without compaction at optimum water content to maximum dry density. In Bulgaria, this soil stabilization technique has been applied in foundation works in collapsible loess ground in order to replace a part of the collapsible layer, to increase the bearing capacity of the soil base and/or to isolate the geoenvironment from migration of pollutants. The aim of the current paper is to examine the effect of the clay content of the loess soil on the strength and permeability of plastic loess-cement. Results from the investigation indicate that the mechanical and hydraulic properties of the plastic loess-cement highly depend on the presence of clay fraction.


Sign in / Sign up

Export Citation Format

Share Document