A NEW TECHNIQUE TO PREDICT THE FRACTURES DIP USING ARTIFICIAL NEURAL NETWORKS AND IMAGE LOGS DATA

2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Mostafa Alizadeh ◽  
Zohreh Movahed ◽  
Radzuan Junin ◽  
Rahmat Mohsin ◽  
Mehdi Alizadeh ◽  
...  

Fractures provide the place for oil and gas to be reserved and they also can provide the pathway for them to move into the well, so having a proper knowledge of them is essential and every year the companies try to improve the existed softwares in this technology. In this work, the new technique is introduced to be added as a new application to the existed softwares such as Petrel and geoframe softwares. The data used in this work are image logs and the other geological logs data of tree wells located in Gachsaran field, wells number GS-A, GS-B and GS-C. The new technique by using the feed-forward artificial neural networks (ANN) with back-propagation learning rule can predict the fracture dip data of the third well using the data from the other 2 wells. The result obtained showed that the ANN model can simulate the relationship between fractures dips in these 3 wells which the multiple R of training and test sets for the ANN model is 0.95099 and 0.912197, respectively.

2013 ◽  
Vol 14 (1) ◽  
pp. 10-17

Artificial neural networks (ANNs) are being used increasingly to predict water variables. This study offers an alternative approach to quantify the relationship between time of chlorination in potable water (due to convectional treatment procedure) and chlorination by-products concentration (expressed as carbon and bromine) with an ANN model, i.e., capturing non-linear relationships among the water quality variables. Thus, carbon and bromine concentrations in potable water (the second chosen due to the toxicity of brominated trihalomethanes, THMs) were predicted using artificial neural networks (ANNs) based mainly on multi-layer perceptrons (MLPs) architecture. The chlorination (detention) time as much as 58 hours in Athens distributed network, comprised the input variables to the ANNs models. Moreover, to develop an ANN model for estimating carbon and bromine, the available data set was partitioned into training, validation and test set. In order to reach an optimum amount of hidden layers or nodes, different architectures were tested. The quality of the ANN simulations was evaluated in terms of the error in the validation sample set for the proper interpretation of the results. The calculated sum-squared errors for training, validation and test set were 0.056, 0.039 and 0.060 respectively for the best model selected. Comparison of the results showed that a two-layer feed-forward back propagation ANN model could be used as an acceptable model for predicting carbon and bromine contained in potable water THMs.


2017 ◽  
Vol 42 (4) ◽  
pp. 643-651
Author(s):  
Naveen Garg ◽  
Siddharth Dhruw ◽  
Laghu Gandhi

Abstract The paper presents the application of Artificial Neural Networks (ANN) in predicting sound insulation through multi-layered sandwich gypsum partition panels. The objective of the work is to develop an Artificial Neural Network (ANN) model to estimate the Rw and STC value of sandwich gypsum constructions. The experimental results reported by National Research Council, Canada for Gypsum board walls (Halliwell et al., 1998) were utilized to develop the model. A multilayer feed-forward approach comprising of 13 input parameters was developed for predicting the Rw and STC value of sandwich gypsum constructions. The Levenberg-Marquardt optimization technique has been used to update the weights in back-propagation algorithm. The presented approach could be very useful for design and optimization of acoustic performance of new sandwich partition panels providing higher sound insulation. The developed ANN model shows a prediction error of ±3 dB or points with a confidence level higher than 95%.


Author(s):  
Saleh Mohammed Al-Alawi

Artificial Neural Networks (ANNs) are computer software programs that mimic the human brain's ability to classify patterns or to make forecasts or decisions based on past experience.  The development of this research area can be attributed to two factors, sufficient computer power to begin practical ANN-based research in the late 1970s and the development of back-propagation in 1986 that enabled ANN models to solve everyday business, scientific, and industrial problems.  Since then, significant applications have been implemented in several fields of study, and many useful intelligent applications and systems have been developed.  The objective of this paper is to generate awareness and to encourage applications development using artificial intelligence-based systems.  Therefore, this paper provides basic ANN concepts, outlines steps used for ANN model development, and lists examples of engineering applications based on the use of the back-propagation paradigm conducted in Oman.  The paper is intended to provide guidelines and necessary references and resources for novice individuals interested in conducting research in engineering or other fields of study using back-propagation artificial neural networks.      


2014 ◽  
Vol 21 (2) ◽  
pp. 239-255 ◽  
Author(s):  
Gunnur Yavuz ◽  
Musa Hakan Arslan ◽  
Omer Kaan Baykan

AbstractIn this study, the efficiency of artificial neural networks (ANN) in predicting the shear strength of reinforced concrete (RC) beams, strengthened by means of externally bonded fiber-reinforced polymers (FRP), is explored. Experimental data of 96 rectangular RC beams from an existing database in the literature were used to develop the ANN model. Eight different input parameters affecting the shear strength were selected for creating the ANN structure. Each parameter was arranged in an input vector and a corresponding output vector that includes the shear strength of the RC beam. For all outputs, the ANN model was trained and tested using a three-layered back-propagation method. The initial performance of back-propagation was evaluated and discussed. In addition, the accuracy of well-known building codes in predicting the shear strength of FRP-strengthened RC beams was also examined, in a comparable way, using same test data. The study shows that the ANN model gives reasonable predictions of the ultimate shear strength of RC beams (R2≈0.93). Moreover, the study concludes that the ANN model predicts the shear strength of FRP-strengthened RC beams better than existing building code approaches.


2020 ◽  
Vol 17 ◽  
pp. 306-321
Author(s):  
R. A. Mohamed ◽  
Mahmoud. Y. El-Bakry ◽  
D. M. Habashy ◽  
E. H. Aamer

In this research, the artificial neural network (ANN) and resilient back propagation (R-prop) training algorithm are utilized to model the photovoltaic properties of Nickel–phthalocyanine (NiPc/p-Si) heterojunction. The experimental data are extracted from experimental studies. Experimental data are utilized as inputs in the ANN model. Training of different structures of the ANN is processed to approach the minimum value of error. Eight artificial neural networks are trained to get a better mean square error (MSE) and best execution for the networks. The ANN performances are also investigated and their values are very small (MSE < 10-3). The simulation results of the current-voltage characteristics of NiPc films are produced and provided excellent matching with the corresponding experimental data. Utilization of ANN model for predictions is also processed and gives accurate results.  The equation which describes the relation between the inputs and outputs is obtained. The high accuracy of the ANN model has appeared in the major guessing power and the ability of generalization depending on the obtained equations.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 511
Author(s):  
Adeniyi Kehinde Onaolapo ◽  
Rudiren Pillay Carpanen ◽  
David George Dorrell ◽  
Evans Eshiemogie Ojo

The reliability of the power supply depends on the reliability of the structure of the grid. Grid networks are exposed to varying weather events, which makes them prone to faults. There is a growing concern that climate change will lead to increasing numbers and severity of weather events, which will adversely affect grid reliability and electricity supply. Predictive models of electricity reliability have been used which utilize computational intelligence techniques. These techniques have not been adequately explored in forecasting problems related to electricity outages due to weather factors. A model for predicting electricity outages caused by weather events is presented in this study. This uses the back-propagation algorithm as related to the concept of artificial neural networks (ANNs). The performance of the ANN model is evaluated using real-life data sets from Pietermaritzburg, South Africa, and compared with some conventional models. These are the exponential smoothing (ES) and multiple linear regression (MLR) models. The results obtained from the ANN model are found to be satisfactory when compared to those obtained from MLR and ES. The results demonstrate that artificial neural networks are robust and can be used to predict electricity outages with regards to faults caused by severe weather conditions.


2019 ◽  
Vol 9 (6) ◽  
pp. 1140
Author(s):  
Zhujun Wang ◽  
Jianping Wang ◽  
Yingmei Xing ◽  
Yalan Yang ◽  
Kaixuan Liu

Nowadays, the popularity of the internet has continuously increased. Predicting human body dimensions intelligently would be beneficial to improve the precision and efficiency of pattern making for enterprises in the apparel industry. In this study, a new predictive model for estimating body dimensions related to garment pattern making is put forward based on radial basis function (RBF) artificial neural networks (ANNs). The model presented in this study was trained and tested using the anthropometric data of 200 adult males between the ages 20 and 48. The detailed body dimensions related to pattern making could be obtained by inputting four easy-to-measure key dimensions into the RBF ANN model. From the simulation results, when spreading parameter σ and momentum factor α were set to 0.012 and 1, the three-layer model with 4, 72, and 8 neurons in the input, hidden, and output layers, respectively, showed maximum accuracy, after being trained by a dataset with 180 samples. Moreover, compared with a classic linear regression model and the back propagation (BP) ANN model according to mean squared error, the predictive performance of the RBF ANN model put forward in this study was better than the other two models. Therefore, it is feasible for the presented predictive model to design garment patterns, especially for tight-fitting garment patterns like activewear. The estimating accuracy of the proposed model would be further improved if trained by more appropriate datasets in the future.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1070
Author(s):  
Abdul Gani Abdul Jameel

The self-learning capabilities of artificial neural networks (ANNs) from large datasets have led to their deployment in the prediction of various physical and chemical phenomena. In the present work, an ANN model was developed to predict the yield sooting index (YSI) of oxygenated fuels using the functional group approach. A total of 265 pure compounds comprising six chemical classes, namely paraffins (n and iso), olefins, naphthenes, aromatics, alcohols, and ethers, were dis-assembled into eight constituent functional groups, namely paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic –CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups, alcoholic OH groups, and ether O groups. These functional groups, in addition to molecular weight and branching index, were used as inputs to develop the ANN model. A neural network with two hidden layers was used to train the model using the Levenberg–Marquardt (ML) training algorithm. The developed model was tested with 15% of the random unseen data points. A regression coefficient (R2) of 0.99 was obtained when the experimental values were compared with the predicted YSI values from the test set. An average error of 3.4% was obtained, which is less than the experimental uncertainty associated with most reported YSI measurements. The developed model can be used for YSI prediction of hydrocarbon fuels containing alcohol and ether-based oxygenates as additives with a high degree of accuracy.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2332
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


Sign in / Sign up

Export Citation Format

Share Document