EFFECT OF P84 (BTDA-TDI/MDI) COMPOSITION TOWARDS THE PERFORMANCE OF THE DISK SUPPORTED CARBON MEMBRANE

2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
N. H. Ismail ◽  
W. N. W. Salleh ◽  
N. Sazali ◽  
M. A. Mohamed ◽  
N. Rosman ◽  
...  

Carbon membrane has attracted researchers’ attention as it is superior in terms of its gas separation performance. In this study, the composition of polymer precursor in the dope solution was investigated based on carbon membrane performance. P84 polyimide was chosen as the polymer precursor as it fulfils the requirement for carbon membrane properties. By varying the polymer precursor composition (6, 9, 12, and 15 wt.%), P84 was stirred in NMP solvent until homogenous solution was formed. Commercialised alumina disc was coated via spray coating method at 1 bar at room temperature. The disc supported polymeric membrane was carbonised at 700 °C under nitrogen (200 ml/min) with heating rate of 3 °C/min. The carbon membrane was analysed via SEM. Gas permeation tests were performed using pure O2 and N2 at 4 bar at room temperature. The selectivity of 3.7 was obtained using the disc supported carbon membrane for O2/N2. The optimum polymer composition in this study was obtained by 12 wt.% of P84.  

2018 ◽  
Vol 195 ◽  
pp. 295-304 ◽  
Author(s):  
N.H. Ismail ◽  
W.N.W. Salleh ◽  
N. Sazali ◽  
A.F. Ismail ◽  
N. Yusof ◽  
...  

2019 ◽  
Vol 570-571 ◽  
pp. 53-60 ◽  
Author(s):  
Xiaoli Ding ◽  
Fangfang Tan ◽  
Hongyong Zhao ◽  
Mingming Hua ◽  
Mingxia Wang ◽  
...  

2018 ◽  
Vol 14 (3) ◽  
pp. 378-381
Author(s):  
Norazlianie Sazali ◽  
Wan Norharyati Wan Salleh ◽  
Ahmad Fauzi Ismail ◽  
Kumaran Kadirgama ◽  
Mohamad Shahrizan Moslan ◽  
...  

High performance tubular carbon membrane (TCM’s) for CO2 separation were prepared by controlling the carbonization heating rates in range of 1-7 oC/min carbonized at 800 oC under Argon environment. A single permeation apparatus was used to determine the gas permeation properties of the membrane at room temperature. Fine turning of the carbonization condition was necessary to obtain the desired permeation properties. The preparation of PI/NCC-based TCM at low heating rate caused the gas permeance for the examined gas N2 and CO2 decreased whereas the selectivity of CO2/N2 increased. It was also identified that the gas permeation properties of the resultant TCM and its structure was highly affected by the heating rate. The best carbonization heating rate was found at 3oC/min for the fabrication of TCM derived via polymer blending of PI/NCC for CO2/N2 separation.


2020 ◽  
Vol 307 ◽  
pp. 258-263
Author(s):  
Nabilah Fazil ◽  
Hilmi Mukhtar ◽  
Dzeti Farhah Mohshim ◽  
Rizwan Nasir

Mixed matrix membrane (MMM), a developing research area, is a membrane formed by incorporating fillers in the polymeric membrane to enhance gas separation performance. In this study, MMMs comprised of blend rubbery block copolymers of polyether block amide (Pebax-1657) with a glassy polyethersulfone (PES) polymer and multi-walled carbon nanotubes (MWCNTs) were synthesized by dry phase inversion method and explored further by gas permeability test. Pebax-1657/PES/MWCNTs membrane resulted in an increased permeability as well as CO2/CH4 selectivity. The Pebax-1657/PES polymer blend MMM with 10wt% of MWCNTs has shown the most superior performance of CO2 permeability, CH4 permeability and CO2/CH4 selectivity in comparison with the pure Pebax-1657 resulted in 66.3% and 11.6% difference respectively.


2020 ◽  
Vol 10 (2) ◽  
pp. 213-219
Author(s):  
Putu Doddy Sutrisna ◽  
Ronaldo Pangestu Hadi ◽  
Jonathan Siswanto ◽  
Giovanni J Prabowo

Biogas is a renewable energy that has been explored widely in Indonesia to substitute non-renewable energy. However, the presence of certain gas, such as carbon dioxide (CO2), can decrease the calorific value and generate greenhouse gas. Hence, the separation of CO2 from methane (CH4) occurs as a crucial step to improve the utilization of biogas. The separation of CH4/CO2 can be conducted using a polymeric membrane that needs no chemical, hence considered as an environmentally friendly technique. However, the utilization of polymeric membrane in gas separation processes is hampered by the trade-off between gas throughput and selectivity. To solve this problem, the incorporation of inorganic particles, such as Zeolitic Imidazolate Framework-8 (ZIF-8) particles, into the polymer matrix to improve the gas separation performance of the membrane has been conducted recently. In this research, ZIF-8 has been incorporated into Polysulfone matrix to form ZIF-8/Polysulfone-based membrane by simple blending and phase inversion techniques in flat sheet configuration. The pure gas permeation tests showed an increase in gas permeability (26 Barrer compared to 17 Barrer) after the inclusion of ZIF-8 particles with a slight decrease in CO2/CH4selectivity for particle loading more than 15wt. %. Therefore, the membrane with 15wt. % of particles showed the best performance in terms of gas selectivity. This result was due to the aggregation of ZIF-8 particles at particle loading higher than 15wt. %. Chemical analysis indicated an interaction between filler and polymer, and there were increases in the degree of crystallinity after the incorporation of ZIF-8.


Author(s):  
Mohd Syafiq Sharip ◽  
Norazlianie Sazali ◽  
Fatin Nurwahdah Ahmad

Hydrogen (H2)-based economy development is expected to create extensive need for efficient collecting strategies of fairly high purity H2. The aim of a H2-selective membrane is to manipulate H2’s high diffusivity characteristics as well as to restrict the outcome of lower solubility. Carbon membranes offer high potential in gas separation industry due to its highly permeable and selective. Therefore, this study aims to investigate the effect of carbonization parameter, i.e., polymer concentration on the gas separation properties. Matrimid 5218 was used as a precursor for carbon tubular membrane preparation to produce high quality of carbon membrane via carbonization process. The polymer solution was coated on the surface of tubular ceramic tubes using dip-coating method. Matrimid 5218-based carbon tubular membranes were fabricated and characterized in terms of its structural morphology, chemical structure, thermal stability, and gas permeation properties by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and pure gas permeation system, respectively. The polymer solution containing 15 wt% Matrimid 5218 shows the best formulation for the preparation of Matrimid 5218-based carbon tubular membrane. The highest H2/N2 selectivity of 401.08±2.56 was obtained for carbon membrane carbonized at 800oC with heating rate of 2oC/min.


Author(s):  
Mohd Syafiq Sharip ◽  
Norazlianie Sazali ◽  
Ahmad Shahir Jamaludin ◽  
Mohd Nizar Mhd Razali

2013 ◽  
Vol 594-595 ◽  
pp. 18-23 ◽  
Author(s):  
Dzeti Farhah Mohshim ◽  
Hilmi Mukhtar ◽  
Zakaria Man

Selected ionic liquids are known to enhance the absorption of CO2 for CO2 removal purpose. In the idea to improve the membrane separation performance for natural gas sweetening, ionic liquid modified polymeric membranes were fabricated by using polyethersulfone (PES) and blended with different composition of ionic liquid which are 5 wt% and 15 wt%. Each fabricated membranes were prepared and dried under solvent evaporation at 90°C. Dense structure observed from FESEM analysis indicated the miscible blends of ionic liquid and PES. TGA analysis showed all fabricated membranes are still containing solvent and this resembles that membrane drying period is still insufficient. All fabricated membranes were tested with ideal gas permeation test. From the result, the addition of ionic liquid has enhanced the ideal CO2 pemeance about 150% as compared to pure PES membrane. The ideal CO2/CH4 selectivity was also increase about 85% from the base but however, the separation index is still considered low and this may due to the presence of the solvent. This preliminary result has confirmed that the blending of ionic liquid with pure PES membrane has technically improved the membrane separation performance.


2020 ◽  
Vol 4 (1) ◽  
pp. 60-67
Author(s):  
Mohd Syafiq Sharip ◽  
Norazlianie Sazali

Hydrogen (H2)-based economy development is expected to create extensive need for efficient collecting strategies of fairly high purity H2. The aim of a H2-selective membrane is to manipulate H2’s high diffusivity characteristics as well as to restrict the outcome of lower solubility. Carbon membranes offer high potential in gas separation industry due to its highly permeable and selective. Therefore, this study aims to investigate the effect of pyrolisis temperature on the gas separation properties. Matrimid 5218 used as a precursor for carbon tubular membrane preparation to produce high quality of carbon membrane via pyrolisis process. The polymer solution was coated on the surface of tubular ceramic tubes by using dip-coating method. Dip-coating technique offer high potential in fabricating defect free carbon membrane. The polymer tubular membrane was then carbonized under argon atmosphere at 600, 700, and 800, and 900oC with heating rate of 2 oC/min. Matrimid 5218-based carbon tubular membranes were fabricated and characterized in terms of its structural morphology, chemical structure, thermal stability, and gas permeation properties by using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and pure gas permeation system, respectively. The highest H2/N2 selectivity of 401.08±2.56 was obtained for carbon membrane carbonized at 800oC with heating rate of 2oC/min


2015 ◽  
Vol 1112 ◽  
pp. 145-148 ◽  
Author(s):  
W.N.W. Salleh ◽  
Norazlianie Sazali ◽  
H. Hasbullah ◽  
Norhaniza Yusof ◽  
Juhana Jaafar ◽  
...  

Membrane-based separation technology has been widely applied for large-scale industrial CO2 capture due to its lower energy consumption and low pollutant production compared with other conventional techniques. The desirable properties in high performance gas separation membranes involve steps that must carefully be designed and controlled. This study investigates the role of carbonization temperature in the fabrication and performance analysis of carbon membranes prepared from polyimide. A commercial polyimide, Matrimid® 5218, was coated on the surface of ceramic tube to produce supported polymer membrane. The prepared polymer membrane was then carbonized under nitrogen atmosphere to produce supported carbon membrane for CO2/CH4 separation. The resulting carbon tubular membrane separation performance was evaluated using pure gas permeation test. Results showed that the suitable carbonization temperature for Matrimid-based carbon tubular membrane was at 850 °C. The highest selectivity for CO2/CH4 of 82.47 was obtained from carbon tubular membrane prepared at 850 °C.


Sign in / Sign up

Export Citation Format

Share Document