scholarly journals MORPHOLOGY AND COMPOSITION ANALYSIS OF ENAMEL SURFACE WITH DENTAL ADHESIVE FOLLOWING THE APPLICATION OF ND:YAG ABLATION

2020 ◽  
Vol 82 (6) ◽  
pp. 63-70
Author(s):  
Fatanah Mohamad Suhaimi ◽  
Nurul Atiqah A. Razak ◽  
Nur Syazana Azizan ◽  
Mohd Aizat Abu Bakar ◽  
Mohammad Khairul Azhar Abdul Razab ◽  
...  

Nd:YAG laser with a wavelength of 1064 nm has been used for various applications in dentistry, including for soft tissue and hard tissue applications. This study aimed to investigate the changes in morphological structures and elemental composition of enamel surface after composite removal using energy variations of Nd:YAG laser. 12 healthy human premolar teeth were cut into half, and Blūgloo adhesives were applied to the tooth surface. The samples were subjected to Nd:YAG laser irradiations with three different energy parameters, 510 mJ, 540 mJ, and 580 mJ. The changes in enamel surface morphology and composition of elements were analyzed using Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX). Surface morphology indicates that 540 mJ can potentially be used for composite adhesives removal. For the elemental composition, carbon, phosphorus, and calcium were statistically significant between samples without composite, after bracket debonding, and after laser irradiation. Several morphological changes may occur on the enamel surface after samples were irradiated with a laser. Energy parameter of the laser plays a vital role towards the desired surface. In this study, 540 mJ is seen to be potential for material removal process on the enamel surface.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1764
Author(s):  
Mohamed Shamel ◽  
Mahmoud M. Al-Ankily ◽  
Mahmoud M. Bakr

Background: Tooth whitening usually includes the direct use of gels containing carbamide or hydrogen peroxide on the tooth enamel surface through a wide variety of products formulas. A generally new advancement in whitening of teeth uses the significant importance of the tooth color shift from yellow to blue in delivering a general enhancement in the observation of tooth whiteness. The aim of the current work was to measure the tooth whitening effects, surface roughness and enamel morphology of six different types of blue covarine-containing and blue covarine-free toothpastes using in vitro models. Methods: A total of 70 sound extracted human premolars were randomly and equally divided into seven groups, and each subjected to tooth brushing using different toothpastes. Tooth color and enamel surface roughness were measured before and after the brushing procedure using a white light interferometer, and scanning electron microscopy (SEM) was used to assess tooth surface after the procedure. Results: Toothpaste containing blue covarine resulted in the greatest improvement in tooth color amongst all groups as well as a statistically significant color difference when compared to blue covarine-free toothpaste.  Furthermore, blue covarine-containing toothpaste resulted in fewer morphological changes to the enamel surface. This was confirmed with SEM images that showed smooth enamel surfaces with fine scratches.   Conclusions: The results from the present study show that blue covarine containing toothpastes are reliable, effective in tooth whitening and produce less surface abrasion when compared to blue covarine-free toothpastes.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Bruno Amaral Haddad ◽  
Tânia Mara Silva ◽  
Lucélia Lemes Gonçalves ◽  
Mateus Rodrigues Silva ◽  
Cláudio Moreira Junior ◽  
...  

Objective: Evaluate the microtensile bond strength (µTBS) in different dentin thicknesses, under simulated pulpal pressure (SPP), submitted to an adhesive technique using laser irradiation. Material and methods: Forty sound human molars were sectioned and randomly divided into two groups (n=20): Group 1 – 1 mm of dentin thickness; Group 2 – 2 mm of dentin thickness. Each group was divided into two subgroups (n=10): Subgroup A – Absence of SPP; Subgroup P – Presence of SPP (15 cm H2O). The samples were sequentially treated with: 37% phosphoric acid, adhesive system (Adper Single Bond 2), Nd:YAG laser irradiation (60 s, 1064 nm, 10 Hz) using 60 and 100 mJ/pulse energy parameters and photopolymerization (10 s). A composite resin block (Filtek Z350) was built up onto the irradiated area. After 30 days stored in water, the samples were sectioned and submitted to microtensile test (10 kgf load cell, 0.5mm/min). Data were analyzed by three-way ANOVA and Tukey tests. Results: Three-way ANOVA revealed no significant differences for SPP (p=0.0821) and for dentin thickness p= 0.9405) on bond strength. The laser energy parameters (p=0.001) indicated that 100 mJ showed greater µTBS means compared to the group irradiated with 60 mJ. Dentin thickness did not affect on µTBS. The presence of SPP reduced the mean µTBS values.  Conclusions: Simulated pulpal pressure did not affect the µTBS using 60 mJ of laser energy parameter. At 100 mJ, the presence of SPP negatively influenced the bond strength, regardless of dentin thickness. KEYWORDSBond strength; Dentin; Intrapulpal pressure; Nd:YAG laser.


Author(s):  
Amera Alkaisi ◽  
Salma B.A. Abdo

Abstract Objective The aim of this study was to determine the effect of a Nd:YAG laser on enamel surface morphology and hardness using different energies and pulses. Materials and Methods Twenty freshly extracted mature teeth were collected and sectioned. An Nd:YAG laser operating at 1,064 nm wavelength and providing up to 9 nanosecond laser pulses (1 J), with a laser spot diameter of 0.8 mm and irradiated surface area of 3 × 3 mm2, was applied to carbon black-coated teeth. The samples were randomly divided into two main groups; each group comprised 20 samples, according to the treatment parameters. The first group was further divided into subgroups A, B1, C1, and D1 using the different energies of 0, 350, 450, and 550 mJ, respectively, with 1 pulse for B1, C1, and D1. The second group was subdivided into A, B2, C2, and D2 and treated with 200 mJ, 3, 4, and 6 pulses for subgroups B2, C2 and D2, respectively. Subgroup A was the same sample for both groups as control with 0 pulses and 0 energy. Morphological features and microhardness were evaluated after laser exposure. Statistical Analysis Analysis of variance (Kruskal–Wallis test) was used to compare all subgroups, followed by the Scheefy significant difference post hoc test to determine the highest significance of the subgroups. Alpha < 0.05 was set as significant. Results The changes in the surface morphology of the enamel included increased crystal sizes, cracks, fissures, and voids with increasing energies and pulses. In group 1, the microhardness was 405.6, 562.7, 612, and 637 for energies of 0, 350, 450, and 550 mJ, respectively. In group 2, the microhardness was 405.6, 673, 866, and 1,050 for 0, 3, 4, and 6 pulses, respectively. Conclusion The Nd:YAG laser is efficient for increasing the microhardness of the enamel surface with minimum morphological damage by applying low energy with more pulses.


2020 ◽  
Vol 38 (3) ◽  
pp. 160-166 ◽  
Author(s):  
Thomas Knaup ◽  
Heike Korbmacher-Steiner ◽  
Andreas Braun ◽  
Johannes-Simon Wenzler ◽  
Isabel Knaup ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5406
Author(s):  
Fei Yin ◽  
Xia Ye ◽  
Hongbing Yao ◽  
Pengyu Wei ◽  
Xumei Wang ◽  
...  

In order to study the spallation phenomenon of titanium alloy under the shock of nanosecond laser, the Neodymium-Yttrium-Aluminum Garnet laser was used to carry out laser shock experiments on the surface of titanium alloy. By observing and measuring the surface morphology of the target material, the forming factors and the changes of the surface morphology under different parameter settings, the forming criteria of the titanium alloy were obtained. The results show that under the single variable method, the change of laser energy can affect the target shape variable, and there is a positive correlation between them. When the thickness was greater than or equal to 0.08 mm, no obvious cracks were found in the targets. Moreover, the number of impact times was the key factor for the target deformation; with the growth of impact times, the target deformation gradually became larger until the crack appeared. The larger the diameter of the spot, the more likely the target was to undergo plastic deformation. The surface of titanium alloy with a thickness of 0.08 mm appeared to rebound under specific laser shock condition. The changes in the back of the target material were observed in real time through a high-speed camera, and the plasma induced by the laser was observed in the process. This study is based on the results of previous studies to obtain the titanium alloy forming criteria, which provides a basis for the setting of laser parameters and the thickness of the target when the nanosecond laser impacts the Ti-6AL-4V target.


2014 ◽  
Vol 906 ◽  
pp. 167-177 ◽  
Author(s):  
Hou Lei Gan ◽  
Lei Tian ◽  
Chang Hai Yi

Abstract: The Interface of sisal fiber which was treated by using alkali, potassium permanganate, atmospheric plasma and silane reinforced polypropylene composites were investigated by single fiber pull-out testes and surface morphology were studied. The results indicated that the morphological changes observed on the sisal fiber surface were obviously evident. Untreated, permanganate and plasma treated sisal fiber reinforced PP show a stable debonding process. Silane treated sisal fiber reinforced PP show an unstable debonding process. Single fiber pull-out tests indicated that the IFSS value was in the order of FIB < FIBKMnO4 < FIBP < FIBKH-550 < FIBKH-570. As can be seen from surface morphology of pull-out fiber, a little of PP resin was adhered to the pull-out FIB, FIBKMnO4, FIBP of sisal fiber. In contrast, PP resin at the surface of pull-out fiber was flaked off and sisal fibril was drawn out from sisal fiber were observed from pull-out fibers of FIBKH-550 and FIBKH-570.


1997 ◽  
Vol 59 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Tullio Sulser ◽  
Wolfram Jochum ◽  
Rahel A. Huch Böni ◽  
Philipp U. Heitz ◽  
Gabriel P. Krestin ◽  
...  

2014 ◽  
Vol 20 (5) ◽  
pp. 1534-1543 ◽  
Author(s):  
Annalaura Restivo ◽  
Ilaria Degano ◽  
Erika Ribechini ◽  
Josefina Pérez-Arantegui ◽  
Maria Perla Colombini

Abstract:An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions.FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis.FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.


Sign in / Sign up

Export Citation Format

Share Document