scholarly journals THE EFFECTS OF INCLINED SHEAR REINFORCEMENT IN REINFORCED CONCRETE BEAM

2018 ◽  
Vol 30 (1) ◽  
Author(s):  
Nor Fazlin Zamri ◽  
Roslli Noor Mohamed ◽  
NurHafizah A. Khalid ◽  
Kang Yong Chiat

This paper presents the findings of an experimental data on the effects of inclined shearreinforcement in reinforced concrete (RC) beam. Two types of shear reinforcement of RC beamwere investigated, conventional stirrups (vertical links) and inclined shear reinforcement (45degrees of inclined shear reinforcement). The RC beam with conventional stirrups wasdesignated as a control specimen. The RC beams with different types of shear reinforcementwere tested for shear under four-point loading system. Comparisons were made between bothtypes of RC beam on load-deflection, load-steel strain, load-concrete strain behaviour and modeof failure. The theoretical and experimental were calculated by using conventional formulation inaccordance to EC 2 in order to verify the experimental results. From the results, it was observedthat the RC beam with 45 degree inclined shear reinforcement improved structural performancein shear by approximately 20% and thus prolong the shear failure behaviour as compared to theRC beam with vertical links.

2017 ◽  
Vol 737 ◽  
pp. 441-447 ◽  
Author(s):  
Stefanus Kristiawan ◽  
Agus Supriyadi ◽  
Senot Sangadji ◽  
Hapsara Brian Wicaksono

Degradation of reinforced concrete (RC) element could lead to a reduction of its strength and serviceability. The degradation may be identified in the form of spalling of concrete cover. For the case of RC beam, spalling of concrete cover could occur at the web of the shear span due to corrosion of the web reinfocements. The shear strength of the damaged-RC beam possibly will become less conservative compared to the corresponding flexural strength with a risk of brittle failure. Patch repair could be a choice to recover the size and strength of the damaged-RC beam. This research investigates the shear failure of patched RC beam without web reinforcements with a particular interest to compare the shear failure behaviour of patched RC beam and normal RC beam. The patch repair material used in this research was unsaturated polyester resin (UPR) mortar. The results indicate that the initial diagonal cracks leading to shear failure of patched RC beam occur at a lower level of loading. However, the patched RC beam could carry a greater load before the diagonal crack propagates in length and width causing the beam to fail in shear.


2014 ◽  
Vol 911 ◽  
pp. 438-442 ◽  
Author(s):  
J.M. Irwan ◽  
R.M. Asyraf ◽  
N. Othman ◽  
H.B. Koh ◽  
A.K. Aeslina ◽  
...  

This paper reports the results on deflection behaviour of reinforced concrete (RC) beam conducted using irregular-shaped Polyethylene Terephthalate (IPET) as a fibre. Three volume fraction of IPET fibre is used namely, 0.5%, 1% and 1.5%. All RC beam specimens are tested under four point loading under flexural capacity behaviour. The results for deflection behaviour namely cracking stage, yield stage and ultimate stage and ductility are reported. The results than are compared with control RC beam. It is found that the addition of IPET fibre improves the first crack and ultimate strength as well as ductility of RC beams proportional to the increment of volume fraction of IPET fibre. Therefore, based on the results reported, the addition of IPET fibre significantly increases the deflection behaviour of RC beam.


2021 ◽  
Vol 6 (7) ◽  
pp. 97
Author(s):  
Stefanus Adi Kristiawan ◽  
Halwan Alfisa Saifullah ◽  
Agus Supriyadi

Deteriorated concrete cover, e.g., spalling or delamination, especially when it occurs at the web of a reinforced concrete (RC) beam within the shear span, can reduce the shear capacity of the beam. Patching of this deteriorated area may be the best option to recover the shear capacity of the beam affected. For this purpose, unsaturated polyester resin mortar (UPR mortar) has been formulated. This research aims to investigate the efficacy of UPR mortar in limiting the shear cracking and so restoring the shear capacity of the deteriorated RC beam. The investigation is carried out by an experimental and numerical study. Two types of beams with a size of 150 × 250 × 1000 mm were prepared. The first type of beams was assigned as a normal beam. The other was a beam with a cut off in the non-stirrup shear span, which was eventually patched with UPR mortar. Two reinforcement ratios were assigned for each type of beams. The results show that UPR mortar is effective to hamper the propagation of diagonal cracks leading to increase the shear failure load by 15–20% compared to the reference (normal) beam. The increase of shear strength with the use of UPR mortar is consistently confirmed at various reinforcement ratios.


Author(s):  
Diego L. Castañeda-Saldarriaga ◽  
Joham Alvarez-Montoya ◽  
Vladimir Martínez-Tejada ◽  
Julián Sierra-Pérez

AbstractSelf-sensing concrete materials, also known as smart concretes, are emerging as a promising technological development for the construction industry, where novel materials with the capability of providing information about the structural integrity while operating as a structural material are required. Despite progress in the field, there are issues related to the integration of these composites in full-scale structural members that need to be addressed before broad practical implementations. This article reports the manufacturing and multipurpose experimental characterization of a cement-based matrix (CBM) composite with carbon nanotube (CNT) inclusions and its integration inside a representative structural member. Methodologies based on current–voltage (I–V) curves, direct current (DC), and biphasic direct current (BDC) were used to study and characterize the electric resistance of the CNT/CBM composite. Their self-sensing behavior was studied using a compression test, while electric resistance measures were taken. To evaluate the damage detection capability, a CNT/CBM parallelepiped was embedded into a reinforced-concrete beam (RC beam) and tested under three-point bending. Principal finding includes the validation of the material’s piezoresistivity behavior and its suitability to be used as strain sensor. Also, test results showed that manufactured composites exhibit an Ohmic response. The embedded CNT/CBM material exhibited a dominant linear proportionality between electrical resistance values, load magnitude, and strain changes into the RC beam. Finally, a change in the global stiffness (associated with a damage occurrence on the beam) was successfully self-sensed using the manufactured sensor by means of the variation in the electrical resistance. These results demonstrate the potential of CNT/CBM composites to be used in real-world structural health monitoring (SHM) applications for damage detection by identifying changes in stiffness of the monitored structural member.


2014 ◽  
Vol 488-489 ◽  
pp. 750-754 ◽  
Author(s):  
Da Fu Cao ◽  
Kai Fu Zhou ◽  
Min Zhou ◽  
Wen Jie Ge ◽  
Bi Yuan Wang

In order to investigate the shear behaviors of RC beams after freeze-thaw cycles, static shear experiments of 45 RC beams after 0, 75, 100, 125, and 150 freeze-thaw cycles were made. The influences of different numbers of freeze-thaw cycles on the shear behaviors of RC beams with different stirrup spacing were studied. The results show that Freeze-thaw cycle, stirrup spacing of reinforced concrete beam has no significant effect on crack distribution and failure pattern; cracking load and ultimate load of shear beams decrease with the increasing of freeze-thaw cycles.


2013 ◽  
Vol 351-352 ◽  
pp. 743-746
Author(s):  
Soo Yeon Seo ◽  
Yu Gun Chung

This paper presents an analytical result about strength deterioration of reinforced concrete (RC) beams due to damage by fire. For the evaluation of the result, three RC beam specimens were made and two of those were exposed to fire. And then beam test was performed for those including non-heated specimen to evaluate the strength deterioration due to the fire damage under simple support condition. Strength decrease of materials due to the fire was evaluated through material test for concrete and reinforcements, respectively. Nonlinear Finite element (FE) analysis was performed by considering the decrease of materials due to fire. The analysis results showed that the structural behavior of fire-damaged RC beam was able to be simulated by using FE analysis with consideration of the reduction of material capacity due to fire.


2015 ◽  
Vol 773-774 ◽  
pp. 911-915 ◽  
Author(s):  
J.M. Irwan ◽  
R.M. Asyraf ◽  
N. Othman ◽  
H.B. Koh ◽  
A.K. Aeslina ◽  
...  

This paper reports the results on cracking propagation and pattern of reinforced concrete (RC) beam conducted using irregular-shaped Polyethylene Terephthalate (IPET) as a fibre. Three volume fraction of IPET fibre is used namely, 0.5%, 1% and 1.5%. All RC beam specimens are tested under four point loading under flexural capacity behaviour. Prior to structural test, the materials properties which include the compressive and tensile strength test and modulus of elasticity test were determined. The results than are compared with control RC beam. It is found that the RC beam with IPET fibre does not significantly change the behaviour of failure mode, cracking propagation and pattern compared to control RC beam.


2012 ◽  
Vol 446-449 ◽  
pp. 3062-3065
Author(s):  
Yu Wang ◽  
Yan Ni Shen ◽  
Xu Fan

Numerical simulation methods were used in this paper , and the bending fatigue performance of reinforced concrete beam with CFRP by ANSYS were analyzed . the Fatigue Mechanism was studied , and obtained the raise the level of fatigue life of reinforced concrete beam with CFRP .The result shows CFRP can increase greatly its fatigue life and play a practical engineering guide.


Sign in / Sign up

Export Citation Format

Share Document