scholarly journals Improvement of mechanical properties and fatigue life by shot peening process on ASTM A516 Grade 70 steel

2018 ◽  
Vol 14 (4) ◽  
pp. 440-442
Author(s):  
Mohd Rashdan Isa ◽  
Omar Suliman Zaroog ◽  
Kalaikathir Murugan ◽  
Sharif Osman Kabashi Guma ◽  
Fareg Saeid Ali

ASTM A516 Grade 70 is widely used in the industrial sector as it provides very good mechanical properties in tough conditions. The main usage of this material is in moderate and low operating services. This paper focuses on the effect of shot peening process on ASTM A516 Grade 70 on improving the mechanical properties and fatigue life of the material. Samples have been shot peened with steel shot to induce compressive residual stress. Hardness, tensile and fatigue test as well as microstructure were done on the samples before and after shot peening process to study the effects on mechanical properties. The result shows that there is an increment in every test after shot peening process. There is a slight increment of 0.47% in hardness value, 0.39% increment in tensile strength and 6.78% increment in fatigue life of the material after shot peening process applied. The slight increment in every result was due to the low intensity of the shot peening process. Result also shows that the shot peening process compressed the molecules closer to each other as can be seen under SEM. Therefore it was proven that in this study, there is a very significant improvement in mechanical properties and fatigue life by shot peening process on ASTM A516 Grade 70 Steel.

2018 ◽  
Vol 765 ◽  
pp. 222-226 ◽  
Author(s):  
Mohd Rashdan Isa ◽  
Omar Suliman Zaroog ◽  
Muhammad Aiman Yunus ◽  
Vignesh Rao Sanny Bavu ◽  
Norzulhilmi Rosmi

Sandbalsting is a method used for surface treatment and at the same time this process also improves the mechanical properties of the material. ASTM A516 Grade 70 is widely used in industrial sector as it provides very good mechanical properties in tough conditions. The main usage of this material is in moderate and low operating services. This paper focus on the effect of sandblasting process on ASTM A516 Grade 70 on improving the mechanical properties and fatigue life of this material. Samples have been blasted with sand grade SAE G-80. The focus of this paper is the result of the microhardness, tensile and fatigue test before and after the sandblasting process to study the improvement in mechanical properties as well as the fatigue life. The research was extent to the microstructure analysis using SEM to study the change in microstructure after sandblasting process and fatigue test. Result shows that the hardness increases with respect to blasting time. Result also shows 2.3% increment in tensile strength after sandblasting and there is significant increment in fatigue life. Result also shows that the sandblasting process decreases the grain size of the material. It was proven that the sandblasting process will increase the hardness and decrease the grain size of the material with respect to sandblasting time. At the same time, there is a significant improvement in mechanical properties and fatigue life by applying sandblasting process on the tested material.


2010 ◽  
Vol 136 ◽  
pp. 260-263
Author(s):  
Zhi Ping Wang

The surface of nodular cast iron QT800 was processed with LSP, its micro-structures, residual stress and fatigue test were compared before and after LSP, and the rupture morphologies of fatigue test were analyzed, the effects of LSP on fatigue behavior of QT800 were discussed. The results shown that the compressive residual stress of QT800 by LSP is over 400MPa, and its fatigue life is increased 20% than that in primitive state; the fatigue resource or the sample by LSP is produced near the graphite, compressive residual stress and refined grain effectively delays cracks initiation of the fatigue source, the expansion speed of fatigue cracks is decreased, which increases fatigue life of QT800.


2006 ◽  
Vol 326-328 ◽  
pp. 1093-1096 ◽  
Author(s):  
Won Jo Park ◽  
Sun Chul Huh ◽  
Sung Ho Park

Small steel ball is utilized in Shot peening process. Called “shot ball” are shot in high speed on the surface of metal. When the shot ball hit the surface, it makes plastic deformation and bounce off, that increase the fatigue life by compressive residual stress on surface. In this study, the results of observation on the tensile strength, hardness, surface roughness, compressive residual stress and fatigue life of a shot peened Al6061-T651 were obtained. Experimental results show that arc height increase tremendously by shot velocity. Also, it shows that surface roughness, hardness, compressive residual stress and fatigue life increase as shot velocity increase.


2006 ◽  
Vol 321-323 ◽  
pp. 662-665 ◽  
Author(s):  
Dong Sun Lee ◽  
Tae Hyung Kim ◽  
Jae Heon Lee ◽  
Tae Kun Lee ◽  
Seong Kyun Cheong

In this paper the fatigue life of spur gear was investigated by changing the shot peening condition. From bending fatigue test depending on various shot peening intensity, fatigue characteristics were investigated. The causes of reduction in fatigue life were analyzed by observing the surface of gear with Scanning Electron Microscope(SEM), and impact of residual stress to fatigue characteristics was identified by measuring compressive residual stress depending peening intensity by depth. The results show that the optimum shot ball velocity is 65 m/s and optimum peening time is 8 minutes. From SEM image, the micro-crack was observed at the surface in case of over peening. This seems to be the factor which reduces fatigue life by decreasing compressive residual stress of surface.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Lakhwinder Singh ◽  
R. A. Khan ◽  
M. L. Aggarwal

The mechanical properties of austenitic stainless steel are rarely improved by heat treatment. Shot peening is a well-known cold working process that affects thin surface of materials. By controlling the shot peening intensity and shot size, the variable mechanical properties film thickness was obtained from 0.05 mm to 0.5 mm. The damping factor and compressive residual stress are determined experimentally and forming a relation between them. It was found that damping factor in thin film surface increases with depth of deformed layer. An investigation was carried out, and it was found that the increase in damping factor was due to introduction of compressive residual stress and increased hardness due to shot peening. The paper discusses a model of changing damping properties with compressive residual stress and depth of deformed layer of austenitic stainless steel.


2009 ◽  
Vol 417-418 ◽  
pp. 901-904 ◽  
Author(s):  
Ricardo A. Cláudio ◽  
José M. Silva ◽  
Carlos M. Branco ◽  
Jim Byrne

It is well known that shot peening has a marked benefit on fatigue life for the majority of applications. This effect is attributed mainly due to the compressive residual stress state at the component’s surface due to shot peening. The present paper evaluates the ability of several fatigue life prediction models, commonly used for general analyses, to predict the behaviour of components with compressive residual stress due to shot peening. Advanced elastic-plastic finite element analyses were carried out in order to obtain stress, strain, strain energy and fracture mechanics parameters for cracks within a compressive residual stress field. With these results several total fatigue life prediction models (including critical distance methods) and fracture mechanics based models were applied in order to predict fatigue life. Fatigue life predictions were compared with several experimental fatigue tests carried out on specimens, representative of a critical region of a compressor disc in a gas turbine aero engine. The results obtained showed that total fatigue life methods, even if combined with critical distance methods, give conservative results when shot peening is considered. Fatigue life was successfully predicted using the method proposed by Cameron and Smith, by adding initiation life to crack propagation life. This last method was also successfully applied for the prediction of non-propagating cracks that were observed during the experimental tests.


2021 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
Jin Gan ◽  
Zi’ang Gao ◽  
Yiwen Wang ◽  
Zhou Wang ◽  
Weiguo Wu

Ship hatch corner is a common structure in a ship and its fatigue problem has always been one of the focuses in ship engineering due to the long–term high–stress concentration state during the ship’s life. For investigating the fatigue life improvement of the ship hatch corner under different shot peening (SP) treatments, a series of fatigue tests, residual stress and surface topography measurements were conducted for SP specimens. Furthermore, the distributions of the surface residual stress are measured with varying numbers of cyclic loads, investigating the residual stress relaxation during cyclic loading. The results show that no matter which SP process parameters are used, the fatigue lives of the shot–peened ship hatch corner specimens are longer than those at unpeened specimens. The relaxation rate of the residual stress mainly depends on the maximum compressive residual stress (σRSmax) and the depth of the maximum compressive residual stress (δmax). The larger the values of σRSmax and δmax, the slower the relaxation rates of the residual stress field. The results imply that the effect of residual stress field and surface roughness should be considered comprehensively to improve the fatigue life of the ship hatch corner with SP treatment. The increase in peening intensity (PI) within a certain range can increase the depth of the compressive residual stress field (CRSF), so the fatigue performance of the ship hatch corner is improved. Once the PI exceeds a certain value, the surface damage caused by the increase in surface roughness will not be offset by the CRSF and the fatigue life cannot be improved optimally. This research provides an approach of fatigue performance enhancement for ship hatch corners in engineering application.


2011 ◽  
Vol 7 (2) ◽  
pp. 44 ◽  
Author(s):  
L. Singh ◽  
R.A. Khan ◽  
M.L. Aggarwal

 Austenitic stainless steel cannot be hardened by any form of heat treatment, in fact, quenching from 10000C merely softens them. They are usually cold worked to increase the hardness. Shot peening is a cold working process that changes micro-structure as well as residual stress in the surface layer. In the present work, the compressive residual stress and fatigue strength of AISI 304 austenitic stainless steel have been evaluated at various shot peening conditions. The improvement in various mechanical properties such as hardness, damping factors and fatigue strength was noticed. Compressive residual stress induced by shot peening varies with cyclic loading due to relaxation of compressive residual stress field. The consideration of relaxed compressive residual stress field instead of original compressive residual stress field provides reliable fatigue design of components. In this paper, the exact reductions in weight and control of mechanical properties due to shot peening process are discussed. 


2012 ◽  
Vol 217-219 ◽  
pp. 2234-2237 ◽  
Author(s):  
Su Qin Jiang ◽  
Hong Guang Xu

Based on finite element method, the FEA model used for analyzing fatigue properties of sample treated by laser shot peening (LSP) was established. In order to research the influence of material intensity on LSP effect, two kinds of wrought magnesium alloys AZ31B and ZK60 with different intensity were chosen as object, the compressive residual stress and fatigue life after LSP were analyzed. After spring back analysis the elastic strain is released in material inner, the value of compressive residual stress was reduced; after LSP with 3 times, the fatigue life gains of AZ31B and ZK60 were 105% and 163%, respectively. The results show that strengthening effect of high intensity material treated by LSP is better than that of low intensity material.


2012 ◽  
Vol 1485 ◽  
pp. 35-40
Author(s):  
Juan Solórzano-López ◽  
Francisco Alfredo García-Pastor

ABSTRACTShot peening is a widely applied surface treatment in a number of manufacturing processes in several industries including automotive, mechanical and aeronautical. This surface treatment is used with the aim of increasing surface toughness and extending fatigue life. The increased performance during fatigue testing of the peened components is mainly the result of the sub-surface compressive residual stress field resulting from the plastic deformation of the surface layers of the target material, caused by the high-velocity impact of the shot. This compressive residual stress field hinders the propagation and coalescence of cracks during the second stage of fatigue testing, effectively increasing the fatigue life well beyond the expected life of a non-peened component.This paper describes a 3D computational model of spherical projectiles impacting simultaneously upon a flat surface. The multi-impact model was developed in ABAQUS/Explicit using finite element method (FEM) and taking into account controlling parameters such as the velocity of the projectiles, their incidence angle and different impact locations in the target surface. Additionally, a parametric study of the physical properties of the target material was carried out in order to assess the effect of temperature on the residual stress field.The simulation has been able to successfully represent a multi-impact processing scenario, showing the indentation caused by each individual shot, as well as the residual stress field for each impact and the interaction between each one of them. It has been found that there is a beneficial effect on the residual stress field magnitude when shot peening is carried out at a relatively high temperature. The results are discussed in terms of the current shot-peening practice in the local industry and the leading edge developments of new peening technologies. Finally, an improved and affordable processing route to increase the fatigue life of automotive components is suggested.


Sign in / Sign up

Export Citation Format

Share Document