scholarly journals Physical properties of stallion semen in relation to some qualitative and quantitative characteristics

Author(s):  
Šárka Hanuláková ◽  
Ondřej Mamica ◽  
Ladislav Máchal ◽  
Ivo Křivánek ◽  
Radek Filipčík ◽  
...  

A growing number of diagnostic methods lead to a perfection of the semen evaluation of stud animals. An elementary semen examination and a careful health assessment have always been the most important part of a stud stallion evaluation. The aim of this experiment was to find the relationship between some qualitative and quantitative semen characteristics and the electrical conductivity and dynamic viscosity of semen. The possible use of the semen physical properties as an additional measure of the semen evaluation in stallions was considered. The electrical conductivity ranged between 0.32 S.m­−1 and 0.55 S.m−1 with the total mean value 0.38 ± 0.04 S.m−1. The dynamic viscosity varied between 88.0 mPa.s−1 and 189.0 mPa.s−1 and the mean value was 130.19 ± 37.3 mPa.s−1. The analysis revealed a highly significant positive linear correlation between the electrical conductivity of semen and the sperm concentration in the ejaculate (rp = 0.69; P ≤ 0.01). Significant negative correlations were found between the electrical conductivity and the ejaculate volume (rp = −0.38; P ≤ 0.05). The electrical conductivity was positively linearly correlated to the sperm motility (rp = 0.42; P ≤ 0.05). The dynamic viscosity of the semen was negatively correlated to the hydrogen ion concentration only (rp = −0.46; P ≤ 0.05).

1943 ◽  
Vol 26 (6) ◽  
pp. 503-512 ◽  
Author(s):  
Paul Andrew Walker

1. The hydrogen ion concentration of the allantoic and amniotic fluids of the developing chick has been determined over the period of incubation between the 7th and 19th days using the glass electrode technique. 2. Changes in this property have been related to changes in the chemical composition of these two fluids. 3. The results of this investigation have been compared with those obtained by other workers. Excellent confirmation has been afforded the work of Yamada, whereas the work of Aggazzotti, which has long been accepted, is shown to be in error.


1921 ◽  
Vol 3 (3) ◽  
pp. 391-414 ◽  
Author(s):  
Jacques Loeb

1. Ions with the opposite sign of charge as that of a protein ion diminish the swelling, osmotic pressure, and viscosity of the protein. Ions with the same sign of charge as the protein ion (with the exception of H and OH ions) seem to have no effect on these properties as long as the concentrations of electrolytes used are not too high. 2. The relative depressing effect of different ions on the physical properties of proteins is a function only of the valency and sign of charge of the ion, ions of the same sign of charge and the same valency having practically the same depressing effect on gelatin solutions of the same pH while the depressing effect increases rapidly with an increase in the valency of the ion. 3. The Hofmeister series of ions are the result of an error due to the failure to notice the influence of the addition of a salt upon the hydrogen ion concentration of the protein solution. As a consequence of this failure, effects caused by a variation in the hydrogen ion concentration of the solution were erroneously attributed to differences in the nature of the ions of the salts used. 4. It is not safe to draw conclusions concerning specific effects of ions on the swelling, osmotic pressure, or viscosity of gelatin when the concentration of electrolytes in the solution exceeds M/16, since at that concentration the values of these properties are near the minimum characteristic of the isoelectric point.


1930 ◽  
Vol 8 (3) ◽  
pp. 133-164 ◽  
Author(s):  
B. G. Peters

A biological study of the fauna of sewage-treatment plants was pursued by the writer for two years, from June 1927, thanks to the generosity of the Grocers' Company. The programme laid down included a qualitative and quantitative survey of the fauna and a collection of data on such physico-chemical factors as hydrogen ion concentration and oxygen requirement, with a view to seeking correlations between the two groups of phenomena.


1919 ◽  
Vol 1 (4) ◽  
pp. 459-472 ◽  
Author(s):  
L. J. Henderson ◽  
Edwin J. Cohn ◽  
P. H. Cathcart ◽  
J. D. Wachman ◽  
W. O. Fenn

In this paper there are reported studies of the acid-base equilibrium in systems containing gluten suspended in solution of hydrochloric acid and sodium hydroxide. The studies have involved measurements of the hydrogen ion concentration, of the electrical conductivity, and of the solution of the proteins. Further, measurements have been made of the swelling and of the viscosity of the gluten component of such systems. The results seem to show that simple chemical phenomena are most important in such systems, and that the modifications of these, resulting from colloidal and heterogeneous characteristics, are of secondary importance in determining the condition of equilibrium, though somewhat more significant in the progress of the system toward the condition of equilibrium.


1918 ◽  
Vol 1 (1) ◽  
pp. 39-60 ◽  
Author(s):  
Jacques Loeb

1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer's previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry.


Sign in / Sign up

Export Citation Format

Share Document