scholarly journals Surface Analysis of Metal Materials After Water Jet Abrasive Machining

Author(s):  
Pavel Polák ◽  
Ján Žitňanský ◽  
Petr Dostál ◽  
Katarína Kollárová

In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

Author(s):  
Jana Moravčíková ◽  
Daynier Rolando Delgado Sobrino ◽  
Peter Košťál

Abstract The present paper discusses the impact of the speed of an abrasive water jet cutting process on some surface properties and morphology of the S235JRG1 steel. The values of the cutting speeds used for the analysis were of 100, 150 and 200 mm.min−1 respectively. A contact profile method was used to analyze the surface roughness during the conducted tests. In this study, the observed surface roughness parameters were the Ra, Rt and Rz, respectively. At the same time, these parameters were measured in three positions, i.e.: at the inlet (A), in the middle (B) and at the exit position (C) of the water jet nozzle with respect to the machined material. The experimental study showed that the roughness of the surface reached higher peaks and was more pronounced at the exit position (C) of the water jet. Similarly, it was also concluded that a better quality of the surface was achieved at a speed of 150 mm.min−1.


2014 ◽  
Vol 513-517 ◽  
pp. 218-222
Author(s):  
Zheng Long Zou ◽  
Xiong Duan ◽  
Chu Wen Guo

Combining with the electron microscope analysis of the morphology of incision, the mechanism of abrasive water jet cutting metal materials was carried out to explore, for the rational selection of abrasive jet cutting parameters, to extend its application to provide the basis. Study shows that the abrasive water jet cutting metal materials, the material damage mechanism is mainly to yield deformation and failure and shear of grinding damage, grooving formation is mainly caused by falling impact deformation and furrows grinding.


2018 ◽  
Vol 53 (20) ◽  
pp. 2909-2924 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

Traditional machining of carbon epoxy composite material is difficult due to excessive tool wear, excessive stresses and heat generation, delamination, high surface waviness, etc. In the present paper, research work involved in the experimental study of abrasive water jet machining of carbon epoxy composite material is described. The aim of present work is to improve surface finish and studying defects in machined samples. Taguchi's orthogonal array approach is used to design experiments. Process parameters namely hydraulic pressure, traverse rate, stand-off distance and abrasive mass flow rate are considered for this study. Analysis of machined surfaces and kerf quality is carried out using scanning electron microscope to evaluate microscopic features. Further, the effect of machining parameters on surface roughness is investigated using analysis of variance approach. It is found that traverse rate and pressure are most significant parameters to control surface roughness. Optimization of process parameters is performed using grey relational analysis. Thereafter, confirmation tests are carried out to verify the improvement in the surface quality with optimum set of process parameters. It is found that surface finish of machined samples is improved by 10.75% with optimum levels of process parameters. Defects like delamination, fiber pull-out and abrasive embedment are also studied using SEM. It is observed that delamination and fiber pull-out are prominent in samples machined at low pressure and high traverse rate.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1459-1470 ◽  
Author(s):  
Predrag Jankovic ◽  
Milos Madic ◽  
Dusan Petkovic ◽  
Miroslav Radovanovic

The problem of cutting difficult-to-machine materials used in the aerospace industry, aircraft industry, and automobile industry, led to the development and application one of today?s most attractive technology for contour cutting - abrasive water jet cutting. For the efficient use of abrasive water jet cutting, it is of great importance to analyze the impact of process parameters on performance indicators, such as cutting quality, productivity, and costs. But also, from the energy utilization point of view, it is very important to analyze the impact of these parameters on the specific cutting energy which represents the amount of energy spent on the removal of material in the unit time. Having this in mind, this study presents the experimental results of abrasive water jet cutting of aluminum alloy with the aim of creating a mathematical model for estimating specific cutting energy as an important indicator of the degree of utilization of the available energy in the cutting process. The mathematical model of the specific cutting energy is explicitly represented as a non-linear function of the process parameters, obtained by the artificial neural network.


A pure water jet at subsonic speed provides an opportunity for application in cutting soft material with the advantage of not contaminating the workpiece. Inside the nozzle, water is flowing through various cross sections, which lead to pressure drop and loss of energy. This requires a nozzle with a design that causes minimum pressure drop. In this work, Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) were used to analyse the flow through five different nozzles. For each nozzle, the pressures of 10 MPa, 20 MPa and 30 MPa were applies at the inlet. For the inlet pressure of 10 MPa, the highest outlet velocity us 136.12 m/s at the pressure of 9.261 MPa. The impact pressure at stand distance of 0.5 mm and 1.0 mm were 8.26 MPa and 8.02 MPa, respectively. For this nozzle, the Factor of Safety for 10 MPa, 20 MPa and 30 MPa were 6.4, 3.2 and 2.961, respectively. The findings are relevant to the development of pure water jet cutting machine


Author(s):  
Kai Cheng ◽  
Yizhi Shao ◽  
Mitul Jadva ◽  
Rodrigo Bodenhorst

The paper presents an improved Preston equation, which aims to be part of the industrial application to abrasive flow machining. The equation will aid the engineers to optimise the process for desired surface roughness and edge tolerance characteristics on complex geometries in an intuitive and scientific manner. The methodology presented to derive the equation underpins the fundamental cutting mechanics of abrasive machining or polishing assuming all abrasive particles within the media are spherical as manufacturers defined. Further to derivation, full four factorial experimental trials and computational fluid dynamics simulation are implemented to generate the flow features of media on coupon to evaluate and validate the equation for its competency and accuracy on prediction of material removal. The modified Preston equation can significantly contribute to optimise the abrasive flow machining process, and will advantage the integrated machine design to predict better virtual surface roughness and material removal rates.


Sign in / Sign up

Export Citation Format

Share Document