scholarly journals Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination

2015 ◽  
Vol 100 (9) ◽  
pp. 1052-1063 ◽  
Author(s):  
Taisuke Ono ◽  
Shingo Takada ◽  
Shintaro Kinugawa ◽  
Hiroyuki Tsutsui
PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261723
Author(s):  
Jamie-Lee M. Thompson ◽  
Daniel W. D. West ◽  
Thomas M. Doering ◽  
Boris P. Budiono ◽  
Sarah J. Lessard ◽  
...  

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Kai-Yi Song ◽  
Xiu-Ming Guo ◽  
Hui-Qi Wang ◽  
Lei Zhang ◽  
Si-Yuan Huang ◽  
...  

Abstract Skeletal muscle atrophy is one of the clinical symptoms of myotonic dystrophy type 1 (DM1). A decline in skeletal muscle regeneration is an important contributor to muscle atrophy. Skeletal muscle satellite cells (SSCs) drive skeletal muscle regeneration. Increased autophagy can reduce the proliferative capacity of SSCs, which plays an important role in the early regeneration of damaged skeletal muscle in DM1. Discovering new ways to restore SSC proliferation may aid in the identification of new therapeutic targets for the treatment of skeletal muscle atrophy in DM1. In the pathogenesis of DM1, muscleblind-like 1 (MBNL1) protein is generally considered to form nuclear RNA foci and disturb the RNA-splicing function. However, the role of MBNL1 in SSC proliferation in DM1 has not been reported. In this study, we obtained SSCs differentiated from normal DM1-04-induced pluripotent stem cells (iPSCs), DM1-03 iPSCs, and DM1-13-3 iPSCs edited by transcription activator-like (TAL) effector nucleases (TALENs) targeting CTG repeats, and primary SSCs to study the pathogenesis of DM1. DM1 SSC lines and primary SSCs showed decreased MBNL1 expression and elevated autophagy levels. However, DM1 SSCs edited by TALENs showed increased cytoplasmic distribution of MBNL1, reduced levels of autophagy, increased levels of phosphorylated mammalian target of rapamycin (mTOR), and improved proliferation rates. In addition, we confirmed that after MBNL1 overexpression, the proliferative capability of DM1 SSCs and the level of phosphorylated mTOR were enhanced, while the autophagy levels were decreased. Our data also demonstrated that the proliferative capability of DM1 SSCs was enhanced after autophagy was inhibited by overexpressing mTOR. Finally, treatment with rapamycin (an mTOR inhibitor) was shown to abolish the increased proliferation capability of DM1 SSCs due to MBNL1 overexpression. Taken together, these data suggest that MBNL1 reverses the proliferation defect of SSCs in DM1 by inhibiting autophagy via the mTOR pathway.


2020 ◽  
Author(s):  
Jürgen G. Okun ◽  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Yann W. Yap ◽  
Thomas Sharkie ◽  
...  

AbstractBoth obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we uncover dysregulated systemic alanine metabolism and hyper-expression of the alanine transaminases (ALT) in the liver of obese/diabetic mice and humans. Hepatocyte-selective silencing of both ALT enzymes revealed a clear role in systemic alanine clearance which related to glycemic control. In obese/diabetic mice, not only did silencing both ALT enzymes retard hyperglycemia, but also reversed skeletal muscle atrophy. This was due to a rescue of depressed skeletal muscle protein synthesis, with a liver-skeletal muscle amino acid metabolic crosstalk exemplified by ex vivo experiments. Mechanistically, chronic liver glucocorticoid and glucagon signaling driven liver alanine catabolism promoted hyperglycemia and skeletal muscle wasting. Taken together, here we reveal an endocrine-hepato-muscular metabolic cycle linking hyperglycemia and skeletal muscle atrophy in type 2 diabetes.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1929-P
Author(s):  
RAGADEEPTHI TUNDUGURU ◽  
MITSUO KATO ◽  
MARYAM ABDOLLAHI ◽  
LINDA L. LANTING ◽  
RAMA NATARAJAN

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1688
Author(s):  
Rafael Deminice ◽  
Hayden Hyatt ◽  
Toshinori Yoshihara ◽  
Mustafa Ozdemir ◽  
Branden Nguyen ◽  
...  

Abundant evidence reveals that activation of the renin-angiotensin system promotes skeletal muscle atrophy in several conditions including congestive heart failure, chronic kidney disease, and prolonged mechanical ventilation. However, controversy exists about whether circulating angiotensin II (AngII) promotes skeletal muscle atrophy by direct or indirect effects; the centerpiece of this debate is the issue of whether skeletal muscle fibers express AngII type 1 receptors (AT1Rs). While some investigators assert that skeletal muscle expresses AT1Rs, others argue that skeletal muscle fibers do not contain AT1Rs. These discordant findings in the literature are likely the result of study design flaws and additional research using a rigorous experimental approach is required to resolve this issue. We tested the hypothesis that AT1Rs are expressed in both human and rat skeletal muscle fibers. Our premise was tested using a rigorous, multi-technique experimental design. First, we established both the location and abundance of AT1Rs on human and rat skeletal muscle fibers by means of an AngII ligand-binding assay. Second, using a new and highly selective AT1R antibody, we carried out Western blotting and determined the abundance of AT1R protein within isolated single muscle fibers from humans and rats. Finally, we confirmed the presence of AT1R mRNA in isolated single muscle fibers from rats. Our results support the hypothesis that AT1Rs are present in both human and rat skeletal muscle fibers. Moreover, our experiments provide the first evidence that AT1Rs are more abundant in fast, type II muscle fibers as compared with slow, type I fibers. Together, these discoveries provide the foundation for an improved understanding of the mechanism(s) responsible for AngII-induced skeletal muscle atrophy.


2007 ◽  
Vol 292 (1) ◽  
pp. C372-C382 ◽  
Author(s):  
Andrew R. Judge ◽  
Alan Koncarevic ◽  
R. Bridge Hunter ◽  
Hsiou-Chi Liou ◽  
Robert W. Jackman ◽  
...  

Skeletal muscle atrophy is associated with a marked and sustained activation of nuclear factor-κB (NF-κB) activity. Previous work showed that p50 is one of the NF-κB family members required for this activation and for muscle atrophy. In this work, we tested whether another NF-κB family member, c-Rel, is required for atrophy. Because endogenous inhibitory factor κBα (IκBα) was activated (i.e., decreased) at 3 and 7 days of muscle disuse (i.e., hindlimb unloading), we also tested if IκBα, which binds and retains Rel proteins in the cytosol, is required for atrophy and intermediates of the atrophy process. To do this, we electrotransferred a dominant negative IκBα (IκBαΔN) in soleus muscles, which were either unloaded or weight bearing. IκBαΔN expression abolished the unloading-induced increase in both NF-κB activation and total ubiquitinated protein. IκBαΔN inhibited unloading-induced fiber atrophy by 40%. The expression of certain genes known to be upregulated with atrophy were significantly inhibited by IκBαΔN expression during unloading, including MAFbx/atrogin-1, Nedd4, IEX, 4E-BP1, FOXO3a, and cathepsin L, suggesting these genes may be targets of NF-κB transcription factors. In contrast, c-Rel was not required for atrophy because the unloading-induced markers of atrophy were the same in c-rel−/− and wild-type mice. Thus IκBα degradation is required for the unloading-induced decrease in fiber size, the increase in protein ubiquitination, activation of NF-κB signaling, and the expression of specific atrophy genes, but c-Rel is not. These data represent a significant advance in our understanding of the role of NF-κB/IκB family members in skeletal muscle atrophy, and they provide new candidate NF-κB target genes for further study.


Sign in / Sign up

Export Citation Format

Share Document