scholarly journals Peristaltic transport of viscoelastic bio-fluids with fractional derivative models

BIOMATH ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 1605161 ◽  
Author(s):  
Emilia Bazhlekova ◽  
Ivan Bazhlekov

Peristaltic flow of viscoelastic fluid through a uniform channel is considered under the assumptions of long wavelength and low Reynolds number. The fractional Oldroyd-B constitutive viscoelastic law is employed. Based on models for peristaltic viscoelastic flows given in a series of papers by Tripathi et al. (e.g. Appl Math Comput. 215 (2010) 3645–3654; Math Biosci. 233 (2011) 90–97) we present a detailed analytical and numerical study of the evolution in time of the pressure gradient across one wavelength. An analytical expression for the pressure gradient is obtained in terms of Mittag-Leffler functions and its behavior is analyzed. For numerical computation the fractional Adams method is used. The influence of the different material parameters is discussed, as well as constraints on the parameters under which the model is physically meaningful.

2010 ◽  
Vol 65 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Nasir Ali ◽  
Muhammad Sajid ◽  
Tasawar Hayat

This study is concerned with the peristaltic flow of a viscous fluid in a curved channel. Mathematically the problem is governed by two partial differential equations. Closed form solutions of the stream function, axial velocity, and pressure gradient are developed under long wavelength and low Reynolds number assumptions. The influence of curvature is analyzed on various flow quantities of interest.


2012 ◽  
Vol 79 (5) ◽  
Author(s):  
S. Noreen ◽  
A. Alsaedi ◽  
T. Hayat

This research is concerned with the peristaltic flow of pseudoplastic fluid. The problem formulation is made and then the solution analysis is presented, subject to a long wavelength and a low Reynolds number. The stream function and pressure gradient have been computed. Pumping and trapping phenomena are analyzed in detail.


2012 ◽  
Vol 17 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Sadia Hina ◽  
Tasawar Hayat ◽  
Saleem Asghar

The present investigation deals with the peristaltic flow of an incompressible Johnson–Segalman fluid in a curved channel. Effects of the channel wall properties are taken into account. The associated equations for peristaltic flow in a curved channel are modeled. Mathematical analysis is simplified under long wavelength and low Reynolds number assumptions. The solution expressions are established for small Weissenberg number. Effects of several embedded parameters on the flow quantities are discussed.


Author(s):  
U. P. Singh ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
Siddharth Shankar Bhatt

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have been discussed through graphs.


Author(s):  
Jiasen Hu ◽  
Torsten H. Fransson

A numerical study has been performed to compare the overall performance of three transition models when used with an industrial Navier-Stokes solver. The three models investigated include two experimental correlations and an integrated eN method. Twelve test cases in realistic turbomachinery flow conditions have been calculated. The study reveals that all the three models can work numerically well with an industrial Navier-Stokes code, but the prediction accuracy of the models depends on flow conditions. In general, all the three models perform comparably well to predict the transition in weak or moderate adverse pressure-gradient regions. The two correlations have the merit if the transition starts in strong favorable pressure-gradient region under high Reynolds number condition. But only the eN method works well to predict the transition controlled by strong adverse pressure gradients. The three models also demonstrate different capabilities to model the effects of turbulence intensity and Reynolds number.


2011 ◽  
Vol 8 (3-4) ◽  
pp. 295-308 ◽  
Author(s):  
Kh. S. Mekheimer ◽  
S. Z.-A. Husseny ◽  
A. I. Abd el Lateef

Peristaltic transport of an incompressible viscous fluid due to an asymmetric waves propagating on the horizontal sidewalls of a rectangular duct is studied under long-wavelength and low-Reynolds number assumptions. The peristaltic wave train on the walls have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with velocity of the wave. The effect of aspect ratio, phase difference, varying channel width and wave amplitudes on the pumping characteristics and trapping phenomena are discussed in detail. The results are compared to with those corresponding to Poiseuille flow.


2010 ◽  
Vol 02 (02) ◽  
pp. 437-455 ◽  
Author(s):  
S. SRINIVAS ◽  
R. MUTHURAJ

Peristaltic flow of a Jeffrey fluid in an inclined asymmetric channel is undertaken when the no-slip condition at the channel wall is no longer valid. The considered fluid is incompressible and electrically conducting. The flow is investigated in a waveframe of reference moving with the velocity of the wave. The analytic solution has been derived for the stream function under long wavelength and low Reynolds number assumptions. The effect of slip and non-Newtonian parameter on the axial velocity and shear stress are discussed in detail. The salient features of pumping and trapping are discussed with particular focus on the effect of slip and non-Newtonian parameters.


Sign in / Sign up

Export Citation Format

Share Document