scholarly journals Theoretical Study of Heat Transfer on Peristaltic Transport of Non-Newtonian Fluid Flowing in a Channel: Rabinowitsch Fluid Model

Author(s):  
U. P. Singh ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
Siddharth Shankar Bhatt

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have been discussed through graphs.

2014 ◽  
Vol 69 (8-9) ◽  
pp. 473-480 ◽  
Author(s):  
Noreen Sher Akbar ◽  
Sohail Nadeemb

In the present article, we have studied the Rabinowitsch fluid model for the peristaltic flow. The non-Newtonian nature of the fluid is analyzed mathematically by considering the Rabinowitsch fluid. The Rabinowitsch fluid model for the peristaltic flow is not discussed so far. This is the first article describing the features of Rabinowitsch fluid in peristaltic literature. The fluid is flowing in a uniform tube with the wave motion. Exact solutions have been calculated for velocity and pressure gradient. The physical behavior of different parameters for velocity, pressure rise, streamlines, and pressure gradient have been examined graphically. It is observed that when Weissenberg number is large then the relaxation time of the fluid is greater than a specific process time in which the pressure rise increases rapidly in the peristaltic pumping regions. Trapping phenomena have been discussed at the end of the article


2018 ◽  
Vol 7 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Saima Noreen

Abstract This research is devoted to the peristaltic flow of Eyring-Powell nanofluid in an asymmetric channel. Robins-type (convective) boundary conditions are employed in the presence of mixed convection and magnetic field. The basic equations of Eyring-Powell nanofluid are modeled in wave frame of reference. Long wavelength and low Reynolds number approach is utilized. Numerical solution of the governing problem is computed and analyzed. The effects of various parameters of interest on the velocity, pressure rise, concentration and temperature are discussed and illustrated graphically. Brownian motion parameter and thermophoresis parameter facilitates the increase in temperature of fluid. Biot numbers serve to reduce the temperature at channel walls.


2017 ◽  
Vol 14 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Ajaz Ahmad Dar ◽  
K. Elangovan

Purpose This paper aims to intend for investigating the influence of an inclined magnetic field on the peristaltic flow of a couple stress fluid through an inclined channel with heat and mass transfer. Design/methodology/approach Long wavelength and low Reynolds number methodology is actualized for simplifying the highly nonlinear equations. Mathematical expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional force and pumping phenomenon are portrayed and symbolized graphically. Exact and numerical solutions have been carried out. The computed results are presented graphically for various embedded parameters. Temperature and concentration profile are also scrutinized and sketched. Findings Results from the current study concluded that the fluid motion can be enhanced by increasing the inclination of both the magnetic field and the channel. Originality/value The elemental characteristics of this analysis is a complete interpretation of the influence of couple stress parameter and inclination of magnetic field on the velocity, pressure gradient, pressure rise and frictional forces.


2015 ◽  
Vol 70 (7) ◽  
pp. 513-520 ◽  
Author(s):  
Ehnber Naheed Maraj ◽  
Sohail Nadeem

AbstractThe present work is the mathematical investigation of peristaltic flow of Rabinowitsch fluid in a curved channel. The current problem is modeled and solutions for non-dimensional differential equation are obtained under low Reynolds number and long wavelength approximation. The effects of long lasting non-dimensional parameters on exact solution for velocity profile, pressure rise and shear stresses are studied graphically in the last section. Tables are also incorporated for shear stresses at the walls of the curved channel.


2014 ◽  
Vol 11 (1-2) ◽  
pp. 81-90 ◽  
Author(s):  
Arshad Riaz ◽  
S. Nadeem ◽  
R. Ellahi ◽  
A. Zeeshan

In the present article, we tried to develop the exact solutions for the peristaltic flow of Jeffrey fluid model in a cross section of three dimensional rectangular channel having slip at the peristaltic boundaries. Equation of motion and boundary conditions are made dimensionless by introducing some suitable nondimensional parameters. The flow is considered under the approximations of low Reynolds number and long wavelength. Exact solution of the obtained linear boundary value problem is evaluated. However, the expression for pressure rise is calculated numerically with the help of numerical integration. All pertinent parameters are discussed through graphs of pressure rise, pressure gradient, velocity and stream functions. It is found that presence of slip at the walls reduces the flow velocity but increases the peristaltic pumping characteristics.


2019 ◽  
Vol 392 ◽  
pp. 158-177 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
Gudekote Manjunatha ◽  
K.V. Prasad

The present study investigates the effects of slip and heat transfer on peristaltic mechanism of Bingham fluid in an inclined tube. The sinusoidal, multi-sinusoidal, triangular, square and trapezoidal wave forms are considered. The analysis has been carried out under the assumptions of long wavelength and small Reynold's number approximations. The closed-form solutions are obtained for velocity, plug flow velocity, pressure gradient, streamlines, and temperature. The numerical integration is employed to investigate the effects of pressure rise and frictional force. The influence of relevant parameters on physiological quantities of interest is analyzed and discussed through graphs. The study reveals that velocity and thermal slip have a decreasing effect on velocity and temperature. Further, it is noticed that the volume of trapped bolus increases for increasing values of velocity slip parameter.


2013 ◽  
Vol 68 (8-9) ◽  
pp. 515-523 ◽  
Author(s):  
Nasir Ali ◽  
Tariq Javed

An attempt is made to investigate the peristaltic motion of a Giesekus fluid in a planar channel under long wavelength and low Reynolds number approximations. Under these assumptions, the flow problem is modelled as a second-order nonlinear ordinary differential equation. Both approximate and exact solution of this equation are presented. The validity of the approximate solution is examined by comparing it with the exact solution. A parametric study is performed to analyze the effects of non-dimensional parameters associated with the Giesekus fluid model (a and We) on flow velocity, pressure rise per wavelength, and trapping phenomenon. It is found that the behaviour of longitudinal velocity and pattern of streamlines for a Giesekus fluid deviate from their counterparts for a Newtonian fluid by changing the parameters a and We. In fact, the magnitude of the longitudinal velocity at the center of the channel for a Giesekus fluid is less than that for a Newtonian fluid. It is also observed that the pressure rise per wavelength decreases in going form Newtonian to Giesekus fluid. Moreover, the size of trapped bolus is large and it circulates faster for a Newtonian fluid in comparison to a Giesekus fluid.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250035 ◽  
Author(s):  
NOREEN SHER AKBAR ◽  
S. NADEEM ◽  
T. HAYAT ◽  
A. ALSAEDI

In this article, we considered the peristaltic flow of Newtonian incompressible fluid of chyme in small intestine. The analysis has been performed using an endoscope. The peristaltic flow of chyme is modeled by assuming that the peristaltic wave is formed in non-periodic mode comprising two sinusoidal waves of different wave lengths propagating with same speed along the outer wall of the tube. Heat transfer mechanisms have been taken into account, such that the constant temperature [Formula: see text] and [Formula: see text] are assigned to inner and outer tubes, respectively. A complex system of equations has been simplified using long wavelength and low Reynolds number approximation because such assumptions exist in small intestine. Exact solutions have been carried out for velocity temperature and pressure gradient. Graphical results have been discussed for pressure rise, frictional forces, temperature, and velocity profile. Comparison of present results with the results of the existing literature have been presented through figures. Trapping phenomena have been presented at the conclusion of the article.


2009 ◽  
Vol 76 (6) ◽  
Author(s):  
Abd El Hakeem Abd El Naby

In this study both linearized and the exponential forms of the Phan-Thien–Tanner model (PTT) are used to simulate the peristaltic flow in a tube. The solutions are investigated under zero Reynolds number and infinitely long wavelength assumptions. Computational solutions are obtained for pressure rise and friction force. The results of the average chyme velocity in the small intestine show that the PTT model is in good agreement with the experimental results, as shown in Table 1. Also, the magnitude of pressure rise and friction force of the exponential PTT model are smaller than in linear PTT model for different values of flow rate. The peristaltic pumping and the augmented pumping are discussed for various values of the physical parameters of interest. The pressure rise and friction force of PTT were compared with other studies in both Newtonian and non-Newtonian cases.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450066 ◽  
Author(s):  
Noreen Sher Akbar ◽  
Adil Wahid Butt

This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave of cilia motion. Flow equations have been modeled and simplified using similarity variables. Exact solutions of the formulated problem have been obtained for velocity, temperature and pressure gradient and graphs for velocity, pressure rise, pressure gradient and temperature profile have been plotted and studied for different values of specific physical parameters. Trapping phenomena and isotherms are presented at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document