Recirculation Zones During the Centrifugal Compressor Surge Cycle: CFD Simulation

2021 ◽  
Author(s):  
Michal Kulak ◽  
Filip Grapow ◽  
Grzegorz Li\u015bkiewicz
Author(s):  
Michał Kulak ◽  
Filip Grapow ◽  
Grzegorz Liśkiewicz

Abstract In this paper the flow recirculation regions during the full surge cycle were described. It is a known fact that the surge cycle consists of two periods: backflow and recovery. The aim of this paper is to add spatial dimension to this analysis. Therefore, the main target is to identify the regions of backflow and recirculation throughout the surge cycle. The full surge cycle modelled with an application of unsteady RANS methods is demonstrated — the significant push was put to realistic boundary conditions definition, narrowed to establishing pressure setting at both inlet and outlet positions located far from the impeller. The results show that all the backflow appears in the recirculation zones that grow and diminish throughout the surge cycle. The regions of inflow and backflow can concurrently exist at different stages of the surge. The analysis includes areas occupied by both structures and mass flowrates associated with them. Presented research is a part of a project aiming at design and construction of more efficient anti-surge systems. Its overall target is to eventually introduce the anti-surge systems that are made to fit the particular machine. Therefore, the understanding of local flows during and prior to surge are one of the key issues that need to be interpreted.


2021 ◽  
Author(s):  
Abishek Sriram ◽  
Jeff Schlautman ◽  
Mehul Varshney ◽  
Dipak Maiti ◽  
Shyam Sundar Pasunurthi ◽  
...  

Abstract Centrifugal compressor has widespread applications in areas such as aerospace, automotive, power and process industries and hence the prediction of its performance is crucial at the design stage. Traditional design, build and test are accelerated through numerical simulation as a virtual test bed for compressor development. In this work, a CFD methodology has been developed to predict the performance of a centrifugal compressor with its surge and choke limits. The transient, compressible flow in a moving domain with body-fitted unstructured mesh is solved in Simerics-MP. The distributed parallel solver of Simerics-MP enables to perform the complete performance map of a centrifugal compressor in a day. The phenomena of surge and choke in a centrifugal compressor is of paramount importance as it determines the limiting points of operation for a particular speed of the compressor. Surge occurs at low flow rates, and it is characterized by instabilities causing undesirable noises that lead to drop in the operational efficiency. It can also result in wear and tear of the impeller blades. Whereas choke occurs at high flow rates with no further increase in pressure and it is accompanied by aberrant vibrations. The CFD simulation predicts the instabilities occurring at surge such as pressure oscillations and flow reversal accurately, which is used as a criterion for the prediction of surge point. The choke phenomenon is characterized by fluid attaining sonic velocity in the impeller or diffuser region of the compressor. The CFD predicted results showed a fair comparison with the experimental results of pressure ratio, power, and efficiency at different speeds.


1996 ◽  
Author(s):  
William Oakes ◽  
Patrick Lawless ◽  
John Fagan ◽  
Sanford Fleeter

1999 ◽  
Vol 121 (2) ◽  
pp. 312-320 ◽  
Author(s):  
G. L. Arnulfi ◽  
P. Giannattasio ◽  
C. Giusto ◽  
A. F. Massardo ◽  
D. Micheli ◽  
...  

This paper describes, from a theoretical point of view, the behavior of compression systems during surge and the effect of passive and active control devices on the instability limit of the system. A lumped parameter model is used to simulate the compression system described in Part I of this work (Arnulfi et al., 1999), based on an industrial multistage centrifugal compressor. A comparison with experimental results shows that the model is accurate enough to describe quantitatively all the features of the phenomenon. A movable wall control system is studied in order to suppress surge in the compressor. Passive and active control schemes are analyzed; they both address directly the dynamic behavior of the compression system to displace the surge line to lower flow rates. The influence of system, geometry and compressor speed is investigated: the optimum values of the control parameters and the corresponding increase in the extent of the stable operating range are presented in the paper.


2021 ◽  
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Matteo Manganelli ◽  
Mirko Morini ◽  
...  

Abstract The operability region of a centrifugal compressor is bounded by the low-flow (or high-pressure ratio) limit, commonly referred to as surge. The exact location of the surge line on the map can vary depending on the operating condition and, as a result, a typical Surge Avoidance Line is established at 10% to 15% above the stated flow for the theoretical surge line. The current state of the art of centrifugal compressor surge control is to utilize a global recycle valve to return flow from the discharge side of a centrifugal compressor to the suction side to increase the flow through the compressor and, thus, avoid entering the surge region. This is conventionally handled by defining a compressor surge control line that conservatively assumes that all stages must be kept out of surge at all the time. In compressors with multiple stages, the amount of energy loss is disproportion-ally large since the energy that was added in each stage is lost during system level (or global) recycling. This work proposes an internal stage-wise recycling that provides a much more controlled flow recycling to affect only those stages that may be on the verge of surge. The amount of flow needed for such a scheme will be much smaller than highly conservative global recycling approach. Also, the flow does not leave the compressor casing and therefore does not cross the pressure boundary. Compared to global recycling this inherently has less loss depending upon application and specific of control design.


Author(s):  
D. Jin ◽  
U. Haupt ◽  
H. Hasemann ◽  
M. Rautenberg

Centrifugal compressor surge at high rotational speed and reduced blade thickness can produce dangerous excitation effects which have numerous resulted in problems in the past. This paper presents an investigation of blade excitation during surge in a high performance single stage centrifugal compressor with various impeller and diffuser geometry. The blade vibration was measured using blade mounted strain gages. The flow characteristics during surge as the cause of blade excitation were simultaneously determined by fast response dynamic pressure transducers. The experiments have been performed using a radial and a backswept impeller, as well as a vanless and vaned diffusers. The rotational speed of the compressor was varied from 5,000 to 14,500 rpm. The characteristics of unsteady flow during surge, such as, the flow pattern of rotating stall and the non-periodic pressure fluctuation during surge were studied in detail. The experimental results demonstrated that, in addition to the excitation of rotating stall during surge, strong non-periodic pressure fluctuations at the beginning and the end of the surge induced dangerous blade excitations in all compressor configurations. The maximum strain values of blade vibration for all compressor versions at different rotational speeds of the compressor were measured to estimate the danger of blade excitation during surge. The results showed that the blade excitation during compressor surge with vaned diffusers is stronger than the excitation with a vanless diffuser and that the blade excitation with a radial impeller is stronger than the excitation with a backswept impeller.


Author(s):  
K. K. Botros

Compression systems are designed and operated in a manner to eliminate or minimize the potential for surge, which is a dynamic instability that is very detrimental to the integrity of the compressor unit. Compressor surge can occur when compressors are subjected to rapid transients such as those occurring following an emergency shutdown (ESD) or a power failure, which in turn, requires fast reaction. To prevent this from occurring, compressor stations are designed with single or dual recycle systems with recycle valves, which are required to open upon ESD. There has been extensive debate and confusion as to whether a single recycle or a dual recycle system is required and the circumstances and the conditions under which one system or the other must be used. This paper discusses this crucial design issue in detail and highlights the parameters affecting the decision to employ either system, particularly for high pressure ratio, low inertia compressors. Parameters such as gas volume capacitance (V) in the recycle path, compressor power train inertia, compressor performance characteristics, the recycle valve coefficient (Cv), prestroke and stroke time, and check valve dynamic characteristic are crucial in determining the conditions for dynamic instabilities. A simple analytical methodology based on the perturbation theory is developed that provides a first-cut analysis to determine if a single recycle system is adequate for a given compression system. The concept of an inertia number is then introduced with a threshold value that determines which recycle system to use. Techniques to circumvent compressor surge following ESD are discussed and their respective effectiveness are highlighted including when and if a delay in the fuel cutoff will be effective. An example of a case study with actual field data of a high pressure ratio centrifugal compressor employed in a natural gas compressor station is presented to illustrate the fundamental concept of single versus dual recycle systems.


Sign in / Sign up

Export Citation Format

Share Document